Abstract

We experimentally verify the focusing characteristics of dichromats, a new class of circular-symmetric diffractive-optical lenses that generate, in the same focal plane, focal spots for one wavelength and ring-shaped spots with central nodes for another wavelength. Using a dichromat, we illuminate a thin photochromic layer and demonstrated point-spread-function compression of the transmitted focal spot.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Westphal and S. W. Hell, Phys. Rev. Lett. 94, 143903 (2005).
    [CrossRef] [PubMed]
  2. R. Menon, H.-Y. Tsai, and S. W. Thomas, Phys. Rev. Lett. 98, 043905 (2007).
    [CrossRef] [PubMed]
  3. K. I. Willig, R. R. Kellner, R. Medda, B. Hein, S. Jakobs, and S. W. Hell, Nat. Methods 3, 721 (2006).
    [CrossRef] [PubMed]
  4. B. Harke, J. Keller, C. K. Ullal, V. Westphal, A. Schönle, and S. W. Hell, Opt. Express 16, 4154 (2008).
    [CrossRef] [PubMed]
  5. H. I. Smith, R. Menon, A. Patel, D. Chao, M. Walsh, and G. Barbastathis, Microelectron. Eng. 83, 956 (2006).
    [CrossRef]
  6. T. Watanabe, T. Watanabe, M. Fujii, Y. Watanabe, N. Toyoma, and Y. Iketaki, Rev. Sci. Instrum. 75, 5131 (2004).
    [CrossRef]
  7. H.-Y. Tsai, H. I. Smith, and R. Menon, J. Vac. Sci. Technol. B 25, 2068 (2007).
    [CrossRef]
  8. R. Menon, P. Rogge, and H.-Y. Tsai, “Design of diffracted lenses that generate optical nulls without phase singularities,” J. Opt. Soc. Am. A (to be published).
  9. R. Menon, D. Gil, and H. I. Smith, J. Opt. Soc. Am. A 23, 567 (2006).
    [CrossRef]
  10. R. Menon and H. I. Smith, J. Opt. Soc. Am. A 23, 2290 (2006).
    [CrossRef]
  11. T. R. M. Sales and G. M. Morris, J. Opt. Soc. Am. A 14, 1637 (1997).
    [CrossRef]

2008 (1)

2007 (2)

R. Menon, H.-Y. Tsai, and S. W. Thomas, Phys. Rev. Lett. 98, 043905 (2007).
[CrossRef] [PubMed]

H.-Y. Tsai, H. I. Smith, and R. Menon, J. Vac. Sci. Technol. B 25, 2068 (2007).
[CrossRef]

2006 (4)

R. Menon, D. Gil, and H. I. Smith, J. Opt. Soc. Am. A 23, 567 (2006).
[CrossRef]

R. Menon and H. I. Smith, J. Opt. Soc. Am. A 23, 2290 (2006).
[CrossRef]

K. I. Willig, R. R. Kellner, R. Medda, B. Hein, S. Jakobs, and S. W. Hell, Nat. Methods 3, 721 (2006).
[CrossRef] [PubMed]

H. I. Smith, R. Menon, A. Patel, D. Chao, M. Walsh, and G. Barbastathis, Microelectron. Eng. 83, 956 (2006).
[CrossRef]

2005 (1)

V. Westphal and S. W. Hell, Phys. Rev. Lett. 94, 143903 (2005).
[CrossRef] [PubMed]

2004 (1)

T. Watanabe, T. Watanabe, M. Fujii, Y. Watanabe, N. Toyoma, and Y. Iketaki, Rev. Sci. Instrum. 75, 5131 (2004).
[CrossRef]

1997 (1)

Barbastathis, G.

H. I. Smith, R. Menon, A. Patel, D. Chao, M. Walsh, and G. Barbastathis, Microelectron. Eng. 83, 956 (2006).
[CrossRef]

Chao, D.

H. I. Smith, R. Menon, A. Patel, D. Chao, M. Walsh, and G. Barbastathis, Microelectron. Eng. 83, 956 (2006).
[CrossRef]

Fujii, M.

T. Watanabe, T. Watanabe, M. Fujii, Y. Watanabe, N. Toyoma, and Y. Iketaki, Rev. Sci. Instrum. 75, 5131 (2004).
[CrossRef]

Gil, D.

Harke, B.

Hein, B.

K. I. Willig, R. R. Kellner, R. Medda, B. Hein, S. Jakobs, and S. W. Hell, Nat. Methods 3, 721 (2006).
[CrossRef] [PubMed]

Hell, S. W.

B. Harke, J. Keller, C. K. Ullal, V. Westphal, A. Schönle, and S. W. Hell, Opt. Express 16, 4154 (2008).
[CrossRef] [PubMed]

K. I. Willig, R. R. Kellner, R. Medda, B. Hein, S. Jakobs, and S. W. Hell, Nat. Methods 3, 721 (2006).
[CrossRef] [PubMed]

V. Westphal and S. W. Hell, Phys. Rev. Lett. 94, 143903 (2005).
[CrossRef] [PubMed]

Iketaki, Y.

T. Watanabe, T. Watanabe, M. Fujii, Y. Watanabe, N. Toyoma, and Y. Iketaki, Rev. Sci. Instrum. 75, 5131 (2004).
[CrossRef]

Jakobs, S.

K. I. Willig, R. R. Kellner, R. Medda, B. Hein, S. Jakobs, and S. W. Hell, Nat. Methods 3, 721 (2006).
[CrossRef] [PubMed]

Keller, J.

Kellner, R. R.

K. I. Willig, R. R. Kellner, R. Medda, B. Hein, S. Jakobs, and S. W. Hell, Nat. Methods 3, 721 (2006).
[CrossRef] [PubMed]

Medda, R.

K. I. Willig, R. R. Kellner, R. Medda, B. Hein, S. Jakobs, and S. W. Hell, Nat. Methods 3, 721 (2006).
[CrossRef] [PubMed]

Menon, R.

R. Menon, H.-Y. Tsai, and S. W. Thomas, Phys. Rev. Lett. 98, 043905 (2007).
[CrossRef] [PubMed]

H.-Y. Tsai, H. I. Smith, and R. Menon, J. Vac. Sci. Technol. B 25, 2068 (2007).
[CrossRef]

H. I. Smith, R. Menon, A. Patel, D. Chao, M. Walsh, and G. Barbastathis, Microelectron. Eng. 83, 956 (2006).
[CrossRef]

R. Menon, D. Gil, and H. I. Smith, J. Opt. Soc. Am. A 23, 567 (2006).
[CrossRef]

R. Menon and H. I. Smith, J. Opt. Soc. Am. A 23, 2290 (2006).
[CrossRef]

R. Menon, P. Rogge, and H.-Y. Tsai, “Design of diffracted lenses that generate optical nulls without phase singularities,” J. Opt. Soc. Am. A (to be published).

Morris, G. M.

Patel, A.

H. I. Smith, R. Menon, A. Patel, D. Chao, M. Walsh, and G. Barbastathis, Microelectron. Eng. 83, 956 (2006).
[CrossRef]

Rogge, P.

R. Menon, P. Rogge, and H.-Y. Tsai, “Design of diffracted lenses that generate optical nulls without phase singularities,” J. Opt. Soc. Am. A (to be published).

Sales, T. R. M.

Schönle, A.

Smith, H. I.

H.-Y. Tsai, H. I. Smith, and R. Menon, J. Vac. Sci. Technol. B 25, 2068 (2007).
[CrossRef]

R. Menon, D. Gil, and H. I. Smith, J. Opt. Soc. Am. A 23, 567 (2006).
[CrossRef]

R. Menon and H. I. Smith, J. Opt. Soc. Am. A 23, 2290 (2006).
[CrossRef]

H. I. Smith, R. Menon, A. Patel, D. Chao, M. Walsh, and G. Barbastathis, Microelectron. Eng. 83, 956 (2006).
[CrossRef]

Thomas, S. W.

R. Menon, H.-Y. Tsai, and S. W. Thomas, Phys. Rev. Lett. 98, 043905 (2007).
[CrossRef] [PubMed]

Toyoma, N.

T. Watanabe, T. Watanabe, M. Fujii, Y. Watanabe, N. Toyoma, and Y. Iketaki, Rev. Sci. Instrum. 75, 5131 (2004).
[CrossRef]

Tsai, H.-Y.

H.-Y. Tsai, H. I. Smith, and R. Menon, J. Vac. Sci. Technol. B 25, 2068 (2007).
[CrossRef]

R. Menon, H.-Y. Tsai, and S. W. Thomas, Phys. Rev. Lett. 98, 043905 (2007).
[CrossRef] [PubMed]

R. Menon, P. Rogge, and H.-Y. Tsai, “Design of diffracted lenses that generate optical nulls without phase singularities,” J. Opt. Soc. Am. A (to be published).

Ullal, C. K.

Walsh, M.

H. I. Smith, R. Menon, A. Patel, D. Chao, M. Walsh, and G. Barbastathis, Microelectron. Eng. 83, 956 (2006).
[CrossRef]

Watanabe, T.

T. Watanabe, T. Watanabe, M. Fujii, Y. Watanabe, N. Toyoma, and Y. Iketaki, Rev. Sci. Instrum. 75, 5131 (2004).
[CrossRef]

T. Watanabe, T. Watanabe, M. Fujii, Y. Watanabe, N. Toyoma, and Y. Iketaki, Rev. Sci. Instrum. 75, 5131 (2004).
[CrossRef]

Watanabe, Y.

T. Watanabe, T. Watanabe, M. Fujii, Y. Watanabe, N. Toyoma, and Y. Iketaki, Rev. Sci. Instrum. 75, 5131 (2004).
[CrossRef]

Westphal, V.

Willig, K. I.

K. I. Willig, R. R. Kellner, R. Medda, B. Hein, S. Jakobs, and S. W. Hell, Nat. Methods 3, 721 (2006).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (4)

R. Menon, P. Rogge, and H.-Y. Tsai, “Design of diffracted lenses that generate optical nulls without phase singularities,” J. Opt. Soc. Am. A (to be published).

R. Menon, D. Gil, and H. I. Smith, J. Opt. Soc. Am. A 23, 567 (2006).
[CrossRef]

R. Menon and H. I. Smith, J. Opt. Soc. Am. A 23, 2290 (2006).
[CrossRef]

T. R. M. Sales and G. M. Morris, J. Opt. Soc. Am. A 14, 1637 (1997).
[CrossRef]

J. Vac. Sci. Technol. B (1)

H.-Y. Tsai, H. I. Smith, and R. Menon, J. Vac. Sci. Technol. B 25, 2068 (2007).
[CrossRef]

Microelectron. Eng. (1)

H. I. Smith, R. Menon, A. Patel, D. Chao, M. Walsh, and G. Barbastathis, Microelectron. Eng. 83, 956 (2006).
[CrossRef]

Nat. Methods (1)

K. I. Willig, R. R. Kellner, R. Medda, B. Hein, S. Jakobs, and S. W. Hell, Nat. Methods 3, 721 (2006).
[CrossRef] [PubMed]

Opt. Express (1)

Phys. Rev. Lett. (2)

V. Westphal and S. W. Hell, Phys. Rev. Lett. 94, 143903 (2005).
[CrossRef] [PubMed]

R. Menon, H.-Y. Tsai, and S. W. Thomas, Phys. Rev. Lett. 98, 043905 (2007).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

T. Watanabe, T. Watanabe, M. Fujii, Y. Watanabe, N. Toyoma, and Y. Iketaki, Rev. Sci. Instrum. 75, 5131 (2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Schematic of the fabrication process. PMMA was spun on top of a fused-silica substrate, and a thin layer of aluminum evaporated on top as a conduction layer. Exposed PMMA was developed in a solution of MIBK and IPA in the ratio of 1:3. Scanning-electron micrographs of the fabricated dichromats with (b) NA = 0.55 , (c) NA = 0.7 , and (d) NA = 0.83 . The moiré artifacts are a consequence of image formation via scanning. Insets at the bottom show magnified images of the NA = 0.83 dichromat. Note that the sequence of zone radii differs significantly from that of a Fresnel zone plate.

Fig. 2
Fig. 2

Experimental data and simulations of PSFs at the focal plane of dichromats with (a) NA = 0.55 , (b) NA = 0.7 , and (c) NA = 0.83 . Dots and crosses represent experimental data for λ 1 = 400 and λ 2 = 532 nm , respectively. Solid curves represent normalized theoretical PSFs. The Fresnel–Kirchhoff diffraction theory was used to calculate the theoretical PSFs. Experimental intensities were normalized using least-squares fit to simulation. Insets in (c) show typical scanning-electron micrographs of photoresist exposures for the ring-shaped intensity profile at λ 2 = 532 nm and a round spot λ 1 = 400 nm . As expected, the rings and spots are smaller at higher NAs.

Fig. 3
Fig. 3

(a) Concept and illumination configuration for absorbance modulation. Through dynamic competition of the reversible transitions in the AML, a subwavelength aperture is created for λ 1 . (b) AML is composed of a polymer containing the photochromic azobenzene side chain, shown at the top. Upon exposure to 400 nm light, the trans isomer undergoes photoisomerization forming the cis isomer. The reverse reaction is favored upon exposure to 532 nm light or thermal excitation. The absorbance of the two isomers at λ 1 = 400 nm is markedly different.

Fig. 4
Fig. 4

Experimental demonstration of PSF compression via absorbance modulation using a dichromat with 0.55 NA . I 1 and I 2 are the incident intensities at λ 1 and λ 2 , respectively. Least-squares fits were conducted separately on each set of data to obtain the I 2 I 1 = 2 and I 2 I 1 = 20 ratios. The I 2 I 1 = 2 set was conducted with the tail of the λ 2 beam illuminating the dichromats and the I 2 I 1 = 20 set was with the λ 2 beam centered at dichromats while keeping the λ 1 beam position fixed. (a) Solid curve shows the simulated PSF at λ 1 when no AML is present. The diamonds show the corresponding experimental data. The dashed curve shows the simulated PSF at λ 1 when I 2 I 1 = 2 . The crosses show the corresponding experimental data. The dotted curve shows the simulated PSF at λ 1 when I 2 I 1 = 20 . The circles represent the corresponding experimental data. As I 2 I 1 increases, the λ 1 illumination is focused more tightly. (b) Expansion from (a) indicating FWHM compression from 300 to 250 nm .

Metrics