Abstract

A method for storing optical data pulse sequences, frequency shifted with respect to the original data pulse frequency, is theoretically described and experimentally demonstrated. Data pulses are converted into long-living acoustic waves via stimulated Brillouin scattering in optical fiber by counterpropagating write pulses of one frequency, and later they are retrieved by read pulses at a different frequency giving rise to frequency-shifted stored pulses. The shifted frequency is governed by the phase-matching condition between the read pulse and the acoustic wave, which can be satisfied using birefringent fibers. The converted frequency is ±52GHz and is tuned by applying strain to the fiber with a slope coefficient of ±1.8MHzμε, and conversion efficiency can be as high as 13% for the storage time of 825ns.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Zhu, D. J. Gauthier, and R. W. Boyd, Science 318, 1748 (2007).
    [CrossRef] [PubMed]
  2. S. J. B. Yoo, J. Lightwave Technol. 14, 955 (1996).
    [CrossRef]
  3. T. Durhuus, B. Mikkelsen, C. Joergensen, S. L. Danielsen, and K. E. Stubkjaer, J. Lightwave Technol. 14, 942 (1996).
    [CrossRef]
  4. R. W. Boyd, Nonlinear Optics (Academic, 2003).
  5. K.-W. Song and K. Hotate, Proc. SPIE 7004, 70043T (2008).
    [CrossRef]
  6. K. S. Chiang, D. Wong, and P. L. Chu, Electron. Lett. 26, 1344 (1990).
    [CrossRef]
  7. V. P. Kalosha, L. Chen, and X. Bao, Opt. Express 14, 12693 (2006).
    [CrossRef] [PubMed]
  8. J. Snoddy, Y. Li, F. Ravet, and X. Bao, Appl. Opt. 46, 1482 (2007).
    [CrossRef] [PubMed]
  9. A. Ortigosa-Blanch, J. C. Knight, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. St. J. Russell, Opt. Lett. 25, 1325 (2000).
    [CrossRef]

2008

K.-W. Song and K. Hotate, Proc. SPIE 7004, 70043T (2008).
[CrossRef]

2007

2006

2000

1996

S. J. B. Yoo, J. Lightwave Technol. 14, 955 (1996).
[CrossRef]

T. Durhuus, B. Mikkelsen, C. Joergensen, S. L. Danielsen, and K. E. Stubkjaer, J. Lightwave Technol. 14, 942 (1996).
[CrossRef]

1990

K. S. Chiang, D. Wong, and P. L. Chu, Electron. Lett. 26, 1344 (1990).
[CrossRef]

Arriaga, J.

Bao, X.

Birks, T. A.

Boyd, R. W.

Z. Zhu, D. J. Gauthier, and R. W. Boyd, Science 318, 1748 (2007).
[CrossRef] [PubMed]

R. W. Boyd, Nonlinear Optics (Academic, 2003).

Chen, L.

Chiang, K. S.

K. S. Chiang, D. Wong, and P. L. Chu, Electron. Lett. 26, 1344 (1990).
[CrossRef]

Chu, P. L.

K. S. Chiang, D. Wong, and P. L. Chu, Electron. Lett. 26, 1344 (1990).
[CrossRef]

Danielsen, S. L.

T. Durhuus, B. Mikkelsen, C. Joergensen, S. L. Danielsen, and K. E. Stubkjaer, J. Lightwave Technol. 14, 942 (1996).
[CrossRef]

Durhuus, T.

T. Durhuus, B. Mikkelsen, C. Joergensen, S. L. Danielsen, and K. E. Stubkjaer, J. Lightwave Technol. 14, 942 (1996).
[CrossRef]

Gauthier, D. J.

Z. Zhu, D. J. Gauthier, and R. W. Boyd, Science 318, 1748 (2007).
[CrossRef] [PubMed]

Hotate, K.

K.-W. Song and K. Hotate, Proc. SPIE 7004, 70043T (2008).
[CrossRef]

Joergensen, C.

T. Durhuus, B. Mikkelsen, C. Joergensen, S. L. Danielsen, and K. E. Stubkjaer, J. Lightwave Technol. 14, 942 (1996).
[CrossRef]

Kalosha, V. P.

Knight, J. C.

Li, Y.

Mangan, B. J.

Mikkelsen, B.

T. Durhuus, B. Mikkelsen, C. Joergensen, S. L. Danielsen, and K. E. Stubkjaer, J. Lightwave Technol. 14, 942 (1996).
[CrossRef]

Ortigosa-Blanch, A.

Ravet, F.

Russell, P. St. J.

Snoddy, J.

Song, K.-W.

K.-W. Song and K. Hotate, Proc. SPIE 7004, 70043T (2008).
[CrossRef]

Stubkjaer, K. E.

T. Durhuus, B. Mikkelsen, C. Joergensen, S. L. Danielsen, and K. E. Stubkjaer, J. Lightwave Technol. 14, 942 (1996).
[CrossRef]

Wadsworth, W. J.

Wong, D.

K. S. Chiang, D. Wong, and P. L. Chu, Electron. Lett. 26, 1344 (1990).
[CrossRef]

Yoo, S. J. B.

S. J. B. Yoo, J. Lightwave Technol. 14, 955 (1996).
[CrossRef]

Zhu, Z.

Z. Zhu, D. J. Gauthier, and R. W. Boyd, Science 318, 1748 (2007).
[CrossRef] [PubMed]

Appl. Opt.

Electron. Lett.

K. S. Chiang, D. Wong, and P. L. Chu, Electron. Lett. 26, 1344 (1990).
[CrossRef]

J. Lightwave Technol.

S. J. B. Yoo, J. Lightwave Technol. 14, 955 (1996).
[CrossRef]

T. Durhuus, B. Mikkelsen, C. Joergensen, S. L. Danielsen, and K. E. Stubkjaer, J. Lightwave Technol. 14, 942 (1996).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. SPIE

K.-W. Song and K. Hotate, Proc. SPIE 7004, 70043T (2008).
[CrossRef]

Science

Z. Zhu, D. J. Gauthier, and R. W. Boyd, Science 318, 1748 (2007).
[CrossRef] [PubMed]

Other

R. W. Boyd, Nonlinear Optics (Academic, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Output data and retrieved pulses (a) for different duration of the write and read pulses τ r and (b) for different delay Δ t between write and read pulses. Pulse powers are P d = 100 mW , P w , r = 30 , 60, 120 W [(a) from the bottom to the top], and 120 W (b), durations τ d = 2 ns , τ w , r = 2 , 1, 0.5 ns (a) and 0.5 ns (b), delay Δ t = 5 ns (a) and 5, 4, 3 ns [(b) from the bottom to the top], phonon lifetime τ ph = 10 ns , gain coefficient g = 5 × 10 11 m W . Dashed curve shows the shape of the input data pulse at the position of the retrieved pulse.

Fig. 2
Fig. 2

(a) Output data pulse for ω r = ω w and (b) output (dashed curve) and stored (solid curve) data pulses for ω r ω w for a sequence of three pulses. Powers are P d = 100 mW , P w , r = 100 W , durations τ d = 2 ns , τ r , w = 0.5 ns , period 3.5 ns , write–read delay Δ t = 7 ns .

Fig. 3
Fig. 3

Input, output, and stored pulse shapes for a sequence of three pulses in phase-modulation format. Pulse powers P d = 100 mW , P w , r = 100 W , durations τ d = 2 ns , τ r , w = 0.5 ns , period 3.5 ns , write–read delay Δ t = 6 ns , fiber length 1.5 m .

Fig. 4
Fig. 4

Waveform of input (a) single and (b) doubled data pulses (dashed curve) and output retrieved pulses (solid curve) detected at the frequencies ν d = 193,426 GHz and ν ret = 193,473 GHz , respectively.

Fig. 5
Fig. 5

Frequency shift of the retrieved pulse for the polarization along the fast and slow axes versus axial strain applied to the PM fiber.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Δ ω = ( Δ n n d ) ω d ,
[ ( 1 v x ) t z ] E d = Q E w ,
[ ( 1 v x ) t + z ] E w = Q * E d ,
[ ( 1 v y ) t z ] E ret = Q E r ,
[ ( 1 v y ) t + z ] E r = Q * E ret ,
( t + 1 τ ph ) Q = g ( E d E w * + E ret E r * ) ,

Metrics