Abstract

The breakup of high-order spatial solitons propagating in an AlGaAs slab waveguide is studied. We experimentally observe the breakup of such beams into multiple fragments and identify the mechanism of this breakup as the combined effect of two- and three-photon absorption. We show that the multiple breakup persists even when the value of two-photon absorption is reduced by an order of magnitude owing to the high value of three-photon absorption of AlGaAs at the half-bandgap. The experimental results extend known mechanisms of soliton breakup induced by two-photon absorption and agree well with numerical beam-propagation simulations.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. I. A. Stegeman, D. N. Christodoulides, and M. Segev, IEEE J. Sel. Top. Quantum Electron. 6, 1419 (2000).
    [CrossRef]
  2. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 2001).
  3. V. V. Afanasjev, J. S. Aitchison, and Y. S. Kivshar, Opt. Commun. 116, 331 (1995).
    [CrossRef]
  4. J. E. Prilepsky and S. A. Derevyanko, Phys. Rev. E 75, 036616 (2007).
    [CrossRef]
  5. Y. Silberberg, Opt. Lett. 15, 1005 (1990).
    [CrossRef] [PubMed]
  6. J. S. Aitchison, Y. Silberberg, A. M. Weiner, D. E. Leaird, M. K. Oliver, J. L. Jackel, E. M. Vogel, and P. W. E. Smith, J. Opt. Soc. Am. B 8, 1290 (1991).
    [CrossRef]
  7. M. G. Banaee and Jeff F. Young, J. Opt. Soc. Am. B , Vol. 23, No. 7, 1484 (2006).
    [CrossRef]
  8. D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, Phys. Rev. A 72, 043816 (2005).
    [CrossRef]
  9. O. Katz, Y. Sintov, Y. Nafcha, and Y. Glick, Opt. Commun. 269, 156 (2007).
    [CrossRef]
  10. J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, IEEE J. Quantum Electron. 33, 341 (1997).
    [CrossRef]
  11. J. U. Kang, G. I. Stegeman, A. Villeneuve, and J. S. Aitchison, Pure Appl. Opt. 5, 583 (1996).
    [CrossRef]
  12. D. Mandelik, H. Eisenberg, Y. Silberberg, R. Morandotti, and J. S. Aitchison, Phys. Rev. Lett. 90, 253902 (2003).
    [CrossRef] [PubMed]
  13. J. U. Kang, G. I. Stegeman, J. S. Aitchison, and N. Akhmediev, Phys. Rev. Lett. 76, 3699 (1996).
    [CrossRef] [PubMed]

2007 (2)

J. E. Prilepsky and S. A. Derevyanko, Phys. Rev. E 75, 036616 (2007).
[CrossRef]

O. Katz, Y. Sintov, Y. Nafcha, and Y. Glick, Opt. Commun. 269, 156 (2007).
[CrossRef]

2006 (1)

2005 (1)

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, Phys. Rev. A 72, 043816 (2005).
[CrossRef]

2003 (1)

D. Mandelik, H. Eisenberg, Y. Silberberg, R. Morandotti, and J. S. Aitchison, Phys. Rev. Lett. 90, 253902 (2003).
[CrossRef] [PubMed]

2001 (1)

G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 2001).

2000 (1)

G. I. A. Stegeman, D. N. Christodoulides, and M. Segev, IEEE J. Sel. Top. Quantum Electron. 6, 1419 (2000).
[CrossRef]

1997 (1)

J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, IEEE J. Quantum Electron. 33, 341 (1997).
[CrossRef]

1996 (2)

J. U. Kang, G. I. Stegeman, A. Villeneuve, and J. S. Aitchison, Pure Appl. Opt. 5, 583 (1996).
[CrossRef]

J. U. Kang, G. I. Stegeman, J. S. Aitchison, and N. Akhmediev, Phys. Rev. Lett. 76, 3699 (1996).
[CrossRef] [PubMed]

1995 (1)

V. V. Afanasjev, J. S. Aitchison, and Y. S. Kivshar, Opt. Commun. 116, 331 (1995).
[CrossRef]

1991 (1)

1990 (1)

Afanasjev, V. V.

V. V. Afanasjev, J. S. Aitchison, and Y. S. Kivshar, Opt. Commun. 116, 331 (1995).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 2001).

Aitchison, J. S.

D. Mandelik, H. Eisenberg, Y. Silberberg, R. Morandotti, and J. S. Aitchison, Phys. Rev. Lett. 90, 253902 (2003).
[CrossRef] [PubMed]

J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, IEEE J. Quantum Electron. 33, 341 (1997).
[CrossRef]

J. U. Kang, G. I. Stegeman, A. Villeneuve, and J. S. Aitchison, Pure Appl. Opt. 5, 583 (1996).
[CrossRef]

J. U. Kang, G. I. Stegeman, J. S. Aitchison, and N. Akhmediev, Phys. Rev. Lett. 76, 3699 (1996).
[CrossRef] [PubMed]

V. V. Afanasjev, J. S. Aitchison, and Y. S. Kivshar, Opt. Commun. 116, 331 (1995).
[CrossRef]

J. S. Aitchison, Y. Silberberg, A. M. Weiner, D. E. Leaird, M. K. Oliver, J. L. Jackel, E. M. Vogel, and P. W. E. Smith, J. Opt. Soc. Am. B 8, 1290 (1991).
[CrossRef]

Akhmediev, N.

J. U. Kang, G. I. Stegeman, J. S. Aitchison, and N. Akhmediev, Phys. Rev. Lett. 76, 3699 (1996).
[CrossRef] [PubMed]

Banaee, M. G.

Christodoulides, D. N.

G. I. A. Stegeman, D. N. Christodoulides, and M. Segev, IEEE J. Sel. Top. Quantum Electron. 6, 1419 (2000).
[CrossRef]

Derevyanko, S. A.

J. E. Prilepsky and S. A. Derevyanko, Phys. Rev. E 75, 036616 (2007).
[CrossRef]

Eisenberg, H.

D. Mandelik, H. Eisenberg, Y. Silberberg, R. Morandotti, and J. S. Aitchison, Phys. Rev. Lett. 90, 253902 (2003).
[CrossRef] [PubMed]

Glick, Y.

O. Katz, Y. Sintov, Y. Nafcha, and Y. Glick, Opt. Commun. 269, 156 (2007).
[CrossRef]

Hutchings, D. C.

J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, IEEE J. Quantum Electron. 33, 341 (1997).
[CrossRef]

Jackel, J. L.

Kang, J. U.

J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, IEEE J. Quantum Electron. 33, 341 (1997).
[CrossRef]

J. U. Kang, G. I. Stegeman, A. Villeneuve, and J. S. Aitchison, Pure Appl. Opt. 5, 583 (1996).
[CrossRef]

J. U. Kang, G. I. Stegeman, J. S. Aitchison, and N. Akhmediev, Phys. Rev. Lett. 76, 3699 (1996).
[CrossRef] [PubMed]

Katz, O.

O. Katz, Y. Sintov, Y. Nafcha, and Y. Glick, Opt. Commun. 269, 156 (2007).
[CrossRef]

Kivshar, Y. S.

V. V. Afanasjev, J. S. Aitchison, and Y. S. Kivshar, Opt. Commun. 116, 331 (1995).
[CrossRef]

Leaird, D. E.

Liu, A. Q.

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, Phys. Rev. A 72, 043816 (2005).
[CrossRef]

Mandelik, D.

D. Mandelik, H. Eisenberg, Y. Silberberg, R. Morandotti, and J. S. Aitchison, Phys. Rev. Lett. 90, 253902 (2003).
[CrossRef] [PubMed]

Morandotti, R.

D. Mandelik, H. Eisenberg, Y. Silberberg, R. Morandotti, and J. S. Aitchison, Phys. Rev. Lett. 90, 253902 (2003).
[CrossRef] [PubMed]

Nafcha, Y.

O. Katz, Y. Sintov, Y. Nafcha, and Y. Glick, Opt. Commun. 269, 156 (2007).
[CrossRef]

Oliver, M. K.

Prilepsky, J. E.

J. E. Prilepsky and S. A. Derevyanko, Phys. Rev. E 75, 036616 (2007).
[CrossRef]

Segev, M.

G. I. A. Stegeman, D. N. Christodoulides, and M. Segev, IEEE J. Sel. Top. Quantum Electron. 6, 1419 (2000).
[CrossRef]

Silberberg, Y.

Sintov, Y.

O. Katz, Y. Sintov, Y. Nafcha, and Y. Glick, Opt. Commun. 269, 156 (2007).
[CrossRef]

Smith, P. W. E.

Stegeman, G. I.

J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, IEEE J. Quantum Electron. 33, 341 (1997).
[CrossRef]

J. U. Kang, G. I. Stegeman, A. Villeneuve, and J. S. Aitchison, Pure Appl. Opt. 5, 583 (1996).
[CrossRef]

J. U. Kang, G. I. Stegeman, J. S. Aitchison, and N. Akhmediev, Phys. Rev. Lett. 76, 3699 (1996).
[CrossRef] [PubMed]

Stegeman, G. I. A.

G. I. A. Stegeman, D. N. Christodoulides, and M. Segev, IEEE J. Sel. Top. Quantum Electron. 6, 1419 (2000).
[CrossRef]

Tang, D. Y.

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, Phys. Rev. A 72, 043816 (2005).
[CrossRef]

Villeneuve, A.

J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, IEEE J. Quantum Electron. 33, 341 (1997).
[CrossRef]

J. U. Kang, G. I. Stegeman, A. Villeneuve, and J. S. Aitchison, Pure Appl. Opt. 5, 583 (1996).
[CrossRef]

Vogel, E. M.

Weiner, A. M.

Young, Jeff F.

Zhao, B.

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, Phys. Rev. A 72, 043816 (2005).
[CrossRef]

Zhao, L. M.

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, Phys. Rev. A 72, 043816 (2005).
[CrossRef]

IEEE J. Quantum Electron. (1)

J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, and A. Villeneuve, IEEE J. Quantum Electron. 33, 341 (1997).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

G. I. A. Stegeman, D. N. Christodoulides, and M. Segev, IEEE J. Sel. Top. Quantum Electron. 6, 1419 (2000).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Commun. (2)

O. Katz, Y. Sintov, Y. Nafcha, and Y. Glick, Opt. Commun. 269, 156 (2007).
[CrossRef]

V. V. Afanasjev, J. S. Aitchison, and Y. S. Kivshar, Opt. Commun. 116, 331 (1995).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. A (1)

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, Phys. Rev. A 72, 043816 (2005).
[CrossRef]

Phys. Rev. E (1)

J. E. Prilepsky and S. A. Derevyanko, Phys. Rev. E 75, 036616 (2007).
[CrossRef]

Phys. Rev. Lett. (2)

D. Mandelik, H. Eisenberg, Y. Silberberg, R. Morandotti, and J. S. Aitchison, Phys. Rev. Lett. 90, 253902 (2003).
[CrossRef] [PubMed]

J. U. Kang, G. I. Stegeman, J. S. Aitchison, and N. Akhmediev, Phys. Rev. Lett. 76, 3699 (1996).
[CrossRef] [PubMed]

Pure Appl. Opt. (1)

J. U. Kang, G. I. Stegeman, A. Villeneuve, and J. S. Aitchison, Pure Appl. Opt. 5, 583 (1996).
[CrossRef]

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic layout of the experimental setup. The InGaAs slab waveguide limits the diffraction to one transverse direction (x axis). The output beam profile and average power are measured at the output facet by an IR camera. An additional CCD camera images the beam propagation from the top facet.

Fig. 2
Fig. 2

Summary of the beam profiles at the slab output for a TE-polarized input beam of 52 μ m diameter at different input powers. (a) Experimentally measured profiles. The y axis depicts measured power at the slab output. (b) Numerically simulated profiles for the same input beam with the material parameters taken from [11]. The y axis depicts the input beam soliton order and the resulting simulated average power at the slab output.

Fig. 3
Fig. 3

Beam propagation images. (a) Experimentally obtained image of the fluorescence pattern at the top facet of the 8 - mm -long AlGaAs slab, showing the propagation of a TE input beam at the highest experimentally available power (average power at the slab output of 17 mW ). This case corresponds to an N 5 soliton (see Fig. 2). (b) Simulated propagation of a beam with power corresponding to an N = 5 soliton, in an 8 mm -long AlGaAs slab with the parameters taken from [11]. (c) Same as (b) but with 3PA as the only dissipation mechanism ( α 1 = α 2 = β 2 = 0 ) .

Fig. 4
Fig. 4

Numerically simulated evolution of the total average power (averaged over the beam width and temporal duration) for an input beam corresponding to an N = 5 soliton under different dissipating mechanism. This N = 5 soliton corresponds to the maximum experimentally available output power (Fig. 2), which is the same as in Fig. 3. The values of the different absorption coefficients are taken from [11] or taken to be zero, accordingly.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

A z = i ( 1 2 k 0 n 0 2 x 2 + n 2 k 0 A 2 ) A 1 2 ( α 1 + α 2 A 2 + α 3 A 4 ) A ,

Metrics