Abstract

The generation of radially polarized beams at a wavelength of 1064nm by the use of a polarization transformer device consisting of space-variant subwavelength gratings (SGs) is demonstrated experimentally. The SG generates a π phase retardation between the TE and TM polarizations, acting as a half-wave plate, reflecting the polarization vector with respect to the axes of the plate. The polarization transformer is characterized by polarization analysis and by far-field measurements. The characterization results show good agreement with theory. The device is suitable for operation with Nd:YAG lasers; thus it is attractive for biological, optical tweezers, and material processing applications.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. S. Youngworth and T. G. Brown, Opt. Express 7, 77 (2000).
    [CrossRef] [PubMed]
  2. Q. Zhan and J. R. Leger, Opt. Express 10, 324 (2002).
    [PubMed]
  3. M. R. Beversluis, L. Novotny, and S. J. Stranick, Opt. Express 14, 2650 (2006).
    [CrossRef] [PubMed]
  4. E. Descrovi, L. Vaccaro, L. Aeschimann, W. Nakagawa, U. Staufer, and H.-P. Herzig, J. Opt. Soc. Am. A 22, 1432 (2005).
    [CrossRef]
  5. G. M. Lerman and U. Levy, Opt. Express 16, 4567 (2008).
    [CrossRef] [PubMed]
  6. S. C. Tidwell, D. H. Ford, and W. D. Kimura, Appl. Opt. 29, 2234 (1990).
    [CrossRef] [PubMed]
  7. M. Stalder and M. Schadt, Opt. Lett. 21, 1948 (1996).
    [CrossRef] [PubMed]
  8. A. Shoham, R. Vander, and S. G. Lipson, Opt. Lett. 31, 3405 (2006).
    [CrossRef] [PubMed]
  9. R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).
    [CrossRef] [PubMed]
  10. U. Levy, C.-H. Tsai, L. Pang, and Y. Fainman, Opt. Lett. 29, 1718 (2004).
    [CrossRef] [PubMed]
  11. Z. 'e. Bomzon, G. Biener, V. Kleiner, and E. Hasman, Opt. Lett. 27, 285 (2002).
    [CrossRef]
  12. W. S. Muhammed, A. Mehta, M. Pitchumani, and E. G. Johnson, IEEE Photon. Technol. Lett. 17, 1441 (2005).
    [CrossRef]
  13. J. E. Ford, F. Xu, K. Urquhart, and Y. Fainman, Opt. Lett. 18, 456 (1993).
    [CrossRef] [PubMed]
  14. I. Richter, P. C. Sun, F. Xu, and Y. Fainman, Appl. Opt. 34, 2421 (1995).
    [CrossRef] [PubMed]
  15. R. C. Tyan, P. C. Sun, A. Scherer, and Y. Fainman, Opt. Lett. 21, 761 (1996).
    [CrossRef] [PubMed]
  16. U. Levy, C. H. Tsai, H. C. Kim, and Y. Fainman, Opt. Express 12, 5345 (2004).
    [CrossRef] [PubMed]
  17. N. Davidson, A. A. Friesem, and E. Hasman, Opt. Lett. 17, 1541 (1992).
    [CrossRef] [PubMed]
  18. Q. Zhan and J. R. Leger, Opt. Express 10, 324 (2002).
    [PubMed]
  19. V. G. Niziev and A. V. Nesterov, J. Phys. D 32, 1455 (1999).
    [CrossRef]
  20. K. C. Neuman and S. M. Block, Rev. Sci. Instrum. 75, 2787 (2004).
    [CrossRef]
  21. D. H. Raguin and G. M. Morris, Appl. Opt. 32, 1154 (1993).
    [CrossRef] [PubMed]

2008

2006

2005

W. S. Muhammed, A. Mehta, M. Pitchumani, and E. G. Johnson, IEEE Photon. Technol. Lett. 17, 1441 (2005).
[CrossRef]

E. Descrovi, L. Vaccaro, L. Aeschimann, W. Nakagawa, U. Staufer, and H.-P. Herzig, J. Opt. Soc. Am. A 22, 1432 (2005).
[CrossRef]

2004

2003

R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef] [PubMed]

2002

2000

1999

V. G. Niziev and A. V. Nesterov, J. Phys. D 32, 1455 (1999).
[CrossRef]

1996

1995

1993

1992

1990

Aeschimann, L.

Beversluis, M. R.

Biener, G.

Block, S. M.

K. C. Neuman and S. M. Block, Rev. Sci. Instrum. 75, 2787 (2004).
[CrossRef]

Bomzon, Z. 'e.

Brown, T. G.

Davidson, N.

Descrovi, E.

Dorn, R.

R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef] [PubMed]

Fainman, Y.

Ford, D. H.

Ford, J. E.

Friesem, A. A.

Hasman, E.

Herzig, H.-P.

Johnson, E. G.

W. S. Muhammed, A. Mehta, M. Pitchumani, and E. G. Johnson, IEEE Photon. Technol. Lett. 17, 1441 (2005).
[CrossRef]

Kim, H. C.

Kimura, W. D.

Kleiner, V.

Leger, J. R.

Lerman, G. M.

Leuchs, G.

R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef] [PubMed]

Levy, U.

Lipson, S. G.

Mehta, A.

W. S. Muhammed, A. Mehta, M. Pitchumani, and E. G. Johnson, IEEE Photon. Technol. Lett. 17, 1441 (2005).
[CrossRef]

Morris, G. M.

Muhammed, W. S.

W. S. Muhammed, A. Mehta, M. Pitchumani, and E. G. Johnson, IEEE Photon. Technol. Lett. 17, 1441 (2005).
[CrossRef]

Nakagawa, W.

Nesterov, A. V.

V. G. Niziev and A. V. Nesterov, J. Phys. D 32, 1455 (1999).
[CrossRef]

Neuman, K. C.

K. C. Neuman and S. M. Block, Rev. Sci. Instrum. 75, 2787 (2004).
[CrossRef]

Niziev, V. G.

V. G. Niziev and A. V. Nesterov, J. Phys. D 32, 1455 (1999).
[CrossRef]

Novotny, L.

Pang, L.

Pitchumani, M.

W. S. Muhammed, A. Mehta, M. Pitchumani, and E. G. Johnson, IEEE Photon. Technol. Lett. 17, 1441 (2005).
[CrossRef]

Quabis, S.

R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef] [PubMed]

Raguin, D. H.

Richter, I.

Schadt, M.

Scherer, A.

Shoham, A.

Stalder, M.

Staufer, U.

Stranick, S. J.

Sun, P. C.

Tidwell, S. C.

Tsai, C. H.

Tsai, C.-H.

Tyan, R. C.

Urquhart, K.

Vaccaro, L.

Vander, R.

Xu, F.

Youngworth, K. S.

Zhan, Q.

Appl. Opt.

IEEE Photon. Technol. Lett.

W. S. Muhammed, A. Mehta, M. Pitchumani, and E. G. Johnson, IEEE Photon. Technol. Lett. 17, 1441 (2005).
[CrossRef]

J. Opt. Soc. Am. A

J. Phys. D

V. G. Niziev and A. V. Nesterov, J. Phys. D 32, 1455 (1999).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef] [PubMed]

Rev. Sci. Instrum.

K. C. Neuman and S. M. Block, Rev. Sci. Instrum. 75, 2787 (2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

SEM picture showing the different sections of the element written in the electron-beam resist. The period is 240 nm , and the duty cycle is 50%.

Fig. 2
Fig. 2

(a) Microscope picture showing the whole element. The diameter of the element is 1 mm . The picture was taken with a 5 × objective lens. (b) SEM picture showing a cross section of the grating etched into the GaAs.

Fig. 3
Fig. 3

Far-field intensity distribution of the radially polarized beam.

Fig. 4
Fig. 4

Intensity distribution of the radially polarized beam after passing through a linear polarizer.

Fig. 5
Fig. 5

Crosses, normalized intensity after the polarization analyzer versus angle of polarization. The experimental data were obtained by digital integration across the radial coordinate of Fig. 4. Solid curve, theoretical curve.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

k g ( x , y ) = 2 π Λ [ cos ( θ ( x , y ) 2 ) x ̂ + sin ( θ ( x , y ) 2 ) y ̂ ] ,

Metrics