Abstract

We describe an all-fiberized coherent detection system at 1.55μm using heterodyne self-mixing modulation in a distributed-feedback fiber laser. Frequency shifting of the optical feedback is based on serrodyne phase modulation with an integrated electro-optic modulator, which is a significant advance in the simplification of the self-mixing detection scheme for class B lasers. Accurate measurement of the optical phase difference between the laser electric field and the backscattered electric field demonstrates nanometric displacement detection on noncooperative targets.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Guiliani, M. Norgia, S. Donati, and T. Bosch, J. Opt. A 4, 283 (2002).
    [CrossRef]
  2. S. Shinohara, A. Mochizuki, H. Yoshida, and M. Sumi, Appl. Opt. 25, 1417 (1986).
    [CrossRef] [PubMed]
  3. K. Otsuka, Appl. Opt. 33, 1111 (1994).
    [PubMed]
  4. K. Otsuka, K. Abe, J.-Y. Ko, and T.-S. Lim, Opt. Lett. 27, 1339 (2002).
    [CrossRef]
  5. E. Lacot, R. Day, and F. Stoeckel, Opt. Lett. 24, 744 (1999).
    [CrossRef]
  6. K. Otsuka, R. Kawai, Y. Asakawa, and T. Fukazawa, Opt. Lett. 24, 1862 (1999).
    [CrossRef]
  7. K. Otzuka, IEEE J. Quantum Electron. 15, 655 (1979).
    [CrossRef]
  8. L. Kervevan, H. Gilles, S. Girard, M. Laroche, and Y. Monfort, Appl. Opt. 45, 4084 (2006).
    [CrossRef] [PubMed]
  9. P. A. Porta, D. P. Curtin, and J. G. McInerney, IEEE Photon. Technol. Lett. 14, 1719 (2002).
    [CrossRef]
  10. J. Zhou, M. Wang, and D. Han, Opt. Express 15, 12183 (2007).
    [CrossRef] [PubMed]
  11. R. Kawai, Y. Asakawa, and K. Otsuka, IEEE Photon. Technol. Lett. 11, 706 (1999).
    [CrossRef]
  12. L. Kervevan, H. Gilles, S. Girard, and M. Laroche, IEEE Photon. Technol. Lett. 16, 1709 (2004).
    [CrossRef]
  13. H. Gilles, S. Girard, M. Laroche, and A. Belarouci, Opt. Lett. 33, 1 (2008).
    [CrossRef]
  14. O. Hugon, E. Lacot, and F. Stoeckel, Fiber Integr. Opt. 22, 283 (2003).
  15. M. Laroche, L. Kervevan, H. Gilles, S. Girard, and J. K. Sahu, Appl. Phys. B 80, 603 (2005).
    [CrossRef]
  16. K. K. Wong and R. M. De La Rue, Opt. Lett. 7, 546 (1982).
    [CrossRef] [PubMed]
  17. O. Jacquin, E. Lacot, C. Felix, and O. Hugon, Appl. Opt. 46, 6779 (2007).
    [CrossRef] [PubMed]

2008

2007

2006

2005

M. Laroche, L. Kervevan, H. Gilles, S. Girard, and J. K. Sahu, Appl. Phys. B 80, 603 (2005).
[CrossRef]

2004

L. Kervevan, H. Gilles, S. Girard, and M. Laroche, IEEE Photon. Technol. Lett. 16, 1709 (2004).
[CrossRef]

2003

O. Hugon, E. Lacot, and F. Stoeckel, Fiber Integr. Opt. 22, 283 (2003).

2002

G. Guiliani, M. Norgia, S. Donati, and T. Bosch, J. Opt. A 4, 283 (2002).
[CrossRef]

P. A. Porta, D. P. Curtin, and J. G. McInerney, IEEE Photon. Technol. Lett. 14, 1719 (2002).
[CrossRef]

K. Otsuka, K. Abe, J.-Y. Ko, and T.-S. Lim, Opt. Lett. 27, 1339 (2002).
[CrossRef]

1999

1994

1986

1982

1979

K. Otzuka, IEEE J. Quantum Electron. 15, 655 (1979).
[CrossRef]

Abe, K.

Asakawa, Y.

K. Otsuka, R. Kawai, Y. Asakawa, and T. Fukazawa, Opt. Lett. 24, 1862 (1999).
[CrossRef]

R. Kawai, Y. Asakawa, and K. Otsuka, IEEE Photon. Technol. Lett. 11, 706 (1999).
[CrossRef]

Belarouci, A.

Bosch, T.

G. Guiliani, M. Norgia, S. Donati, and T. Bosch, J. Opt. A 4, 283 (2002).
[CrossRef]

Curtin, D. P.

P. A. Porta, D. P. Curtin, and J. G. McInerney, IEEE Photon. Technol. Lett. 14, 1719 (2002).
[CrossRef]

Day, R.

De La Rue, R. M.

Donati, S.

G. Guiliani, M. Norgia, S. Donati, and T. Bosch, J. Opt. A 4, 283 (2002).
[CrossRef]

Felix, C.

Fukazawa, T.

Gilles, H.

H. Gilles, S. Girard, M. Laroche, and A. Belarouci, Opt. Lett. 33, 1 (2008).
[CrossRef]

L. Kervevan, H. Gilles, S. Girard, M. Laroche, and Y. Monfort, Appl. Opt. 45, 4084 (2006).
[CrossRef] [PubMed]

M. Laroche, L. Kervevan, H. Gilles, S. Girard, and J. K. Sahu, Appl. Phys. B 80, 603 (2005).
[CrossRef]

L. Kervevan, H. Gilles, S. Girard, and M. Laroche, IEEE Photon. Technol. Lett. 16, 1709 (2004).
[CrossRef]

Girard, S.

H. Gilles, S. Girard, M. Laroche, and A. Belarouci, Opt. Lett. 33, 1 (2008).
[CrossRef]

L. Kervevan, H. Gilles, S. Girard, M. Laroche, and Y. Monfort, Appl. Opt. 45, 4084 (2006).
[CrossRef] [PubMed]

M. Laroche, L. Kervevan, H. Gilles, S. Girard, and J. K. Sahu, Appl. Phys. B 80, 603 (2005).
[CrossRef]

L. Kervevan, H. Gilles, S. Girard, and M. Laroche, IEEE Photon. Technol. Lett. 16, 1709 (2004).
[CrossRef]

Guiliani, G.

G. Guiliani, M. Norgia, S. Donati, and T. Bosch, J. Opt. A 4, 283 (2002).
[CrossRef]

Han, D.

Hugon, O.

O. Jacquin, E. Lacot, C. Felix, and O. Hugon, Appl. Opt. 46, 6779 (2007).
[CrossRef] [PubMed]

O. Hugon, E. Lacot, and F. Stoeckel, Fiber Integr. Opt. 22, 283 (2003).

Jacquin, O.

Kawai, R.

K. Otsuka, R. Kawai, Y. Asakawa, and T. Fukazawa, Opt. Lett. 24, 1862 (1999).
[CrossRef]

R. Kawai, Y. Asakawa, and K. Otsuka, IEEE Photon. Technol. Lett. 11, 706 (1999).
[CrossRef]

Kervevan, L.

L. Kervevan, H. Gilles, S. Girard, M. Laroche, and Y. Monfort, Appl. Opt. 45, 4084 (2006).
[CrossRef] [PubMed]

M. Laroche, L. Kervevan, H. Gilles, S. Girard, and J. K. Sahu, Appl. Phys. B 80, 603 (2005).
[CrossRef]

L. Kervevan, H. Gilles, S. Girard, and M. Laroche, IEEE Photon. Technol. Lett. 16, 1709 (2004).
[CrossRef]

Ko, J.-Y.

Lacot, E.

Laroche, M.

H. Gilles, S. Girard, M. Laroche, and A. Belarouci, Opt. Lett. 33, 1 (2008).
[CrossRef]

L. Kervevan, H. Gilles, S. Girard, M. Laroche, and Y. Monfort, Appl. Opt. 45, 4084 (2006).
[CrossRef] [PubMed]

M. Laroche, L. Kervevan, H. Gilles, S. Girard, and J. K. Sahu, Appl. Phys. B 80, 603 (2005).
[CrossRef]

L. Kervevan, H. Gilles, S. Girard, and M. Laroche, IEEE Photon. Technol. Lett. 16, 1709 (2004).
[CrossRef]

Lim, T.-S.

McInerney, J. G.

P. A. Porta, D. P. Curtin, and J. G. McInerney, IEEE Photon. Technol. Lett. 14, 1719 (2002).
[CrossRef]

Mochizuki, A.

Monfort, Y.

Norgia, M.

G. Guiliani, M. Norgia, S. Donati, and T. Bosch, J. Opt. A 4, 283 (2002).
[CrossRef]

Otsuka, K.

Otzuka, K.

K. Otzuka, IEEE J. Quantum Electron. 15, 655 (1979).
[CrossRef]

Porta, P. A.

P. A. Porta, D. P. Curtin, and J. G. McInerney, IEEE Photon. Technol. Lett. 14, 1719 (2002).
[CrossRef]

Sahu, J. K.

M. Laroche, L. Kervevan, H. Gilles, S. Girard, and J. K. Sahu, Appl. Phys. B 80, 603 (2005).
[CrossRef]

Shinohara, S.

Stoeckel, F.

O. Hugon, E. Lacot, and F. Stoeckel, Fiber Integr. Opt. 22, 283 (2003).

E. Lacot, R. Day, and F. Stoeckel, Opt. Lett. 24, 744 (1999).
[CrossRef]

Sumi, M.

Wang, M.

Wong, K. K.

Yoshida, H.

Zhou, J.

Appl. Opt.

Appl. Phys. B

M. Laroche, L. Kervevan, H. Gilles, S. Girard, and J. K. Sahu, Appl. Phys. B 80, 603 (2005).
[CrossRef]

Fiber Integr. Opt.

O. Hugon, E. Lacot, and F. Stoeckel, Fiber Integr. Opt. 22, 283 (2003).

IEEE J. Quantum Electron.

K. Otzuka, IEEE J. Quantum Electron. 15, 655 (1979).
[CrossRef]

IEEE Photon. Technol. Lett.

P. A. Porta, D. P. Curtin, and J. G. McInerney, IEEE Photon. Technol. Lett. 14, 1719 (2002).
[CrossRef]

R. Kawai, Y. Asakawa, and K. Otsuka, IEEE Photon. Technol. Lett. 11, 706 (1999).
[CrossRef]

L. Kervevan, H. Gilles, S. Girard, and M. Laroche, IEEE Photon. Technol. Lett. 16, 1709 (2004).
[CrossRef]

J. Opt. A

G. Guiliani, M. Norgia, S. Donati, and T. Bosch, J. Opt. A 4, 283 (2002).
[CrossRef]

Opt. Express

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the heterodyne self-mixing laser detection.

Fig. 2
Fig. 2

Power spectra of the laser in a heterodyne self-mixing configuration with the presence of a target (solid curve) and without a target (dotted curve). The relaxation frequency is near f R = 530 kHz , and the frequency shift is f m = 500 kHz .

Fig. 3
Fig. 3

(a) Variation of the measured optical phase induced by a linear displacement of the target and (b) voltage ramp applied to the sound speaker.

Fig. 4
Fig. 4

Polar plot of the amplitude of the laser power modulation versus the detected phase. The total phase variation is 4 π (two turns).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

τ c = 2 n L c ln ( 1 R 1 R 2 )
E ( t ) = E ( t ) exp ( j ϕ ( t ) ) = E 0 exp ( j 2 π ν 0 t ) exp ( j 2 π T m t ) = E 0 exp ( j 2 π ( ν 0 + 1 T m ) t ) .

Metrics