Abstract

A stimulated Brillouin scattering based distributed optical fiber sensor using a probe pulse (<5ns) of finite extinction ratio (ER) (>20dB) followed by a dark base of a finite length is proposed to achieve higher spatial and frequency resolution for the first time. The basic mechanism for detecting the small stress or temperature section is to reduce the peak height of the Brillouin spectrum contributed by dc at the stress point so that the Brillouin frequency shift (BFS) of small stress or temperature section can show up at a much lower peak height of the Brillouin spectrum. The finite ER of the positive pulse is used as prepumping of the phonon field to achieve higher contrast for the Brillouin spectrum. The length of dark base is determined by the balanced contribution of the normal base in fiber and the dark base after the pulse to the Brillouin gain spectrum. The theoretical simulation and the experimental results both demonstrate that the proposed novel pulse shape can be used to measure a centimeter stress or temperature section with small uncertainty for the BFS. For two 5cm stress sections of 15MHz equivalent strains in BFS with a 30cm separation, the measured frequency uncertainty is 0.9MHz.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Horiguchi, K. Shimizu, and T. Kurashima, J. Lightwave Technol. 13, 1296 (1995).
    [CrossRef]
  2. T. Horiguchi, K. Shimizu, T. Kurashima, and Y. Koyamada, in Distributed and Multiplexed Fiber Optic Sensors V (SPIE, 1995), pp. 126.
  3. L. F. Zou, X. Bao, Y. D. Wan, and L. Chen, Opt. Lett. 30, 370 (2005).
    [CrossRef] [PubMed]
  4. A. W. Brown, B. G. Colpitts, and K. Brown, IEEE Photon. Technol. Lett. 17, 1501 (2005).
    [CrossRef]
  5. K. Kishida, C.-H. Li, and K. Nishiguchi, in 17th International Conference on Optical Fiber Sensors (SPIE, 2005), pp. 559.
  6. S. B. Cho, J. J. Lee, and I. B. Kwon, Smart Mater. Struct. 15, 315 (2006).
    [CrossRef]
  7. V. P. Kalosha, E. A. Ponomarev, L. Chen, and X. Bao, Opt. Express 14, 2071 (2006).
    [CrossRef] [PubMed]
  8. X. Bao, Y. D. Wan, L. F. Zou, and L. Chen, Opt. Lett. 30, 827 (2005).
    [CrossRef] [PubMed]
  9. R. Chu, M. Kanefsky, and J. Falk, J. Appl. Phys. 71, 4653 (1992).
    [CrossRef]
  10. X. D. Zeng, X. Bao, C. Y. Chhoa, T. W. Bremner, A. W. Brown, M. D. DeMerchant, G. Ferrier, A. L. Kalamkarov, and A. V. Georgiades, Appl. Opt. 41, 5105 (2002).
    [CrossRef] [PubMed]

2006

S. B. Cho, J. J. Lee, and I. B. Kwon, Smart Mater. Struct. 15, 315 (2006).
[CrossRef]

V. P. Kalosha, E. A. Ponomarev, L. Chen, and X. Bao, Opt. Express 14, 2071 (2006).
[CrossRef] [PubMed]

2005

2002

1995

T. Horiguchi, K. Shimizu, and T. Kurashima, J. Lightwave Technol. 13, 1296 (1995).
[CrossRef]

1992

R. Chu, M. Kanefsky, and J. Falk, J. Appl. Phys. 71, 4653 (1992).
[CrossRef]

Bao, X.

Bremner, T. W.

Brown, A. W.

Brown, K.

A. W. Brown, B. G. Colpitts, and K. Brown, IEEE Photon. Technol. Lett. 17, 1501 (2005).
[CrossRef]

Chen, L.

Chhoa, C. Y.

Cho, S. B.

S. B. Cho, J. J. Lee, and I. B. Kwon, Smart Mater. Struct. 15, 315 (2006).
[CrossRef]

Chu, R.

R. Chu, M. Kanefsky, and J. Falk, J. Appl. Phys. 71, 4653 (1992).
[CrossRef]

Colpitts, B. G.

A. W. Brown, B. G. Colpitts, and K. Brown, IEEE Photon. Technol. Lett. 17, 1501 (2005).
[CrossRef]

DeMerchant, M. D.

Falk, J.

R. Chu, M. Kanefsky, and J. Falk, J. Appl. Phys. 71, 4653 (1992).
[CrossRef]

Ferrier, G.

Georgiades, A. V.

Horiguchi, T.

T. Horiguchi, K. Shimizu, and T. Kurashima, J. Lightwave Technol. 13, 1296 (1995).
[CrossRef]

T. Horiguchi, K. Shimizu, T. Kurashima, and Y. Koyamada, in Distributed and Multiplexed Fiber Optic Sensors V (SPIE, 1995), pp. 126.

Kalamkarov, A. L.

Kalosha, V. P.

Kanefsky, M.

R. Chu, M. Kanefsky, and J. Falk, J. Appl. Phys. 71, 4653 (1992).
[CrossRef]

Kishida, K.

K. Kishida, C.-H. Li, and K. Nishiguchi, in 17th International Conference on Optical Fiber Sensors (SPIE, 2005), pp. 559.

Koyamada, Y.

T. Horiguchi, K. Shimizu, T. Kurashima, and Y. Koyamada, in Distributed and Multiplexed Fiber Optic Sensors V (SPIE, 1995), pp. 126.

Kurashima, T.

T. Horiguchi, K. Shimizu, and T. Kurashima, J. Lightwave Technol. 13, 1296 (1995).
[CrossRef]

T. Horiguchi, K. Shimizu, T. Kurashima, and Y. Koyamada, in Distributed and Multiplexed Fiber Optic Sensors V (SPIE, 1995), pp. 126.

Kwon, I. B.

S. B. Cho, J. J. Lee, and I. B. Kwon, Smart Mater. Struct. 15, 315 (2006).
[CrossRef]

Lee, J. J.

S. B. Cho, J. J. Lee, and I. B. Kwon, Smart Mater. Struct. 15, 315 (2006).
[CrossRef]

Li, C.-H.

K. Kishida, C.-H. Li, and K. Nishiguchi, in 17th International Conference on Optical Fiber Sensors (SPIE, 2005), pp. 559.

Nishiguchi, K.

K. Kishida, C.-H. Li, and K. Nishiguchi, in 17th International Conference on Optical Fiber Sensors (SPIE, 2005), pp. 559.

Ponomarev, E. A.

Shimizu, K.

T. Horiguchi, K. Shimizu, and T. Kurashima, J. Lightwave Technol. 13, 1296 (1995).
[CrossRef]

T. Horiguchi, K. Shimizu, T. Kurashima, and Y. Koyamada, in Distributed and Multiplexed Fiber Optic Sensors V (SPIE, 1995), pp. 126.

Wan, Y. D.

Zeng, X. D.

Zou, L. F.

Appl. Opt.

IEEE Photon. Technol. Lett.

A. W. Brown, B. G. Colpitts, and K. Brown, IEEE Photon. Technol. Lett. 17, 1501 (2005).
[CrossRef]

J. Appl. Phys.

R. Chu, M. Kanefsky, and J. Falk, J. Appl. Phys. 71, 4653 (1992).
[CrossRef]

J. Lightwave Technol.

T. Horiguchi, K. Shimizu, and T. Kurashima, J. Lightwave Technol. 13, 1296 (1995).
[CrossRef]

Opt. Express

Opt. Lett.

Smart Mater. Struct.

S. B. Cho, J. J. Lee, and I. B. Kwon, Smart Mater. Struct. 15, 315 (2006).
[CrossRef]

Other

T. Horiguchi, K. Shimizu, T. Kurashima, and Y. Koyamada, in Distributed and Multiplexed Fiber Optic Sensors V (SPIE, 1995), pp. 126.

K. Kishida, C.-H. Li, and K. Nishiguchi, in 17th International Conference on Optical Fiber Sensors (SPIE, 2005), pp. 559.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

DB-pulse.

Fig. 2
Fig. 2

Time-domain signal for 10870 and 10840 MHz by simulation.

Fig. 3
Fig. 3

Brillouin spectra of strained section and unstrained section for (a) normal pulse and (b)–(d) DB-pulse. The values of Δτ for the DB-pulse are (b) 85, (c) 75, and (d) 95 ns , respectively. In (b), the power at v B drops the most, and the power at v B ε increases the most.

Fig. 4
Fig. 4

Experimental results. (a) Brillouin spectra along the fiber. (b) Enlarged figure for the spectra around the strained sections. (c) Brillouin spectrum for strained and unstrained sections. The thick curve is the Lorentzian fitting to the peak. (d) BFS distribution along the fiber.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

α AC ( t ) = P CW ( z = 0 , t ) P CW ( z = 0 , t = 0 ) .
( z 1 υ g t 1 2 α ) E P = Q ¯ E S ,
( z + 1 υ g t + 1 2 α ) E S = Q ¯ * E P ,
( t + Γ ) Q ¯ = 1 2 Γ 1 g B E P E S * .

Metrics