Abstract

For the first time, to the best of our knowledge, a radially polarized laser pulse was produced from a passively Q-switched Nd:YAG ceramic microchip laser with a piece of Cr4+:YAG crystal as the saturable absorber and multilayer concentric subwavelength grating as the polarization-selective output coupler. The averaged laser power reached 450mW with a slope efficiency of 30.2%. The laser pulse had a maximum peak power of 759W, a minimum pulse duration of 86ns, and a 6.7kHz repetition rate at 3.7W absorbed pump power. The polarization degree of the radially polarized pulse was measured to be as high as 97.4%. Such a radially polarized laser pulse with a high peak power and a short width is important to numerous applications such as metal cutting.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Lehane and H. S. Kwok, Appl. Phys. A 73, 45 (2001).
    [CrossRef]
  2. J.-M. Lee, J.-H. Jang, and T.-K. Yoo, Appl. Phys. A 70, 561 (2000).
    [CrossRef]
  3. V. G. Niziev and A. V. Nesterov, J. Phys. D 32, 1455 (1999).
    [CrossRef]
  4. V. Nesterov, V. G. Niziev, and V. P. Yakunin, J. Phys. D 32, 2871 (1999).
    [CrossRef]
  5. D. P. Biss, K. S. Youngworth, and T. G. Brown, Appl. Opt. 45, 470 (2006).
    [CrossRef] [PubMed]
  6. K. S. Youngworth and T. G. Brown, Proc. SPIE 3919, 75 (2000).
    [CrossRef]
  7. A. Ashkin, IEEE J. Sel. Top. Quantum Electron. 6, 841 (2000).
    [CrossRef]
  8. D. Pohl, Appl. Phys. Lett. 20, 266 (1972).
    [CrossRef]
  9. J. L. Li, K. I. Ueda, L. X. Zhong, M. Musha, A. Shirakawa, and T. Sato, Opt. Express 16, 10841 (2008).
    [CrossRef] [PubMed]
  10. R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, Appl. Phys. Lett. 77, 3322 (2000).
    [CrossRef]
  11. I. Moshe, S. Jackel, and A. Meir, Opt. Lett. 28, 807 (2003).
    [CrossRef] [PubMed]
  12. Y. Kozawa and S. Sato, Opt. Lett. 30, 3063 (2005).
    [CrossRef] [PubMed]
  13. W. Koechner, Solid State Laser Engineering, 6th ed. (Springer, 2006), Chap. 8.
  14. R. Weber, B. Neuenschwander, M. Mac Donald, M. B. Roos, and H. P. Weber, IEEE J. Quantum Electron. 34, 1047 (1998).
    [CrossRef]

2008 (1)

2006 (1)

2005 (1)

2003 (1)

2001 (1)

C. Lehane and H. S. Kwok, Appl. Phys. A 73, 45 (2001).
[CrossRef]

2000 (4)

J.-M. Lee, J.-H. Jang, and T.-K. Yoo, Appl. Phys. A 70, 561 (2000).
[CrossRef]

K. S. Youngworth and T. G. Brown, Proc. SPIE 3919, 75 (2000).
[CrossRef]

A. Ashkin, IEEE J. Sel. Top. Quantum Electron. 6, 841 (2000).
[CrossRef]

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, Appl. Phys. Lett. 77, 3322 (2000).
[CrossRef]

1999 (2)

V. G. Niziev and A. V. Nesterov, J. Phys. D 32, 1455 (1999).
[CrossRef]

V. Nesterov, V. G. Niziev, and V. P. Yakunin, J. Phys. D 32, 2871 (1999).
[CrossRef]

1998 (1)

R. Weber, B. Neuenschwander, M. Mac Donald, M. B. Roos, and H. P. Weber, IEEE J. Quantum Electron. 34, 1047 (1998).
[CrossRef]

1972 (1)

D. Pohl, Appl. Phys. Lett. 20, 266 (1972).
[CrossRef]

Ashkin, A.

A. Ashkin, IEEE J. Sel. Top. Quantum Electron. 6, 841 (2000).
[CrossRef]

Biss, D. P.

Blit, S.

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, Appl. Phys. Lett. 77, 3322 (2000).
[CrossRef]

Bomzon, Z.

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, Appl. Phys. Lett. 77, 3322 (2000).
[CrossRef]

Brown, T. G.

Davidson, N.

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, Appl. Phys. Lett. 77, 3322 (2000).
[CrossRef]

Friesem, A. A.

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, Appl. Phys. Lett. 77, 3322 (2000).
[CrossRef]

Hasman, E.

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, Appl. Phys. Lett. 77, 3322 (2000).
[CrossRef]

Jackel, S.

Jang, J.-H.

J.-M. Lee, J.-H. Jang, and T.-K. Yoo, Appl. Phys. A 70, 561 (2000).
[CrossRef]

Koechner, W.

W. Koechner, Solid State Laser Engineering, 6th ed. (Springer, 2006), Chap. 8.

Kozawa, Y.

Kwok, H. S.

C. Lehane and H. S. Kwok, Appl. Phys. A 73, 45 (2001).
[CrossRef]

Lee, J.-M.

J.-M. Lee, J.-H. Jang, and T.-K. Yoo, Appl. Phys. A 70, 561 (2000).
[CrossRef]

Lehane, C.

C. Lehane and H. S. Kwok, Appl. Phys. A 73, 45 (2001).
[CrossRef]

Li, J. L.

Mac Donald, M.

R. Weber, B. Neuenschwander, M. Mac Donald, M. B. Roos, and H. P. Weber, IEEE J. Quantum Electron. 34, 1047 (1998).
[CrossRef]

Meir, A.

Moshe, I.

Musha, M.

Nesterov, A. V.

V. G. Niziev and A. V. Nesterov, J. Phys. D 32, 1455 (1999).
[CrossRef]

Nesterov, V.

V. Nesterov, V. G. Niziev, and V. P. Yakunin, J. Phys. D 32, 2871 (1999).
[CrossRef]

Neuenschwander, B.

R. Weber, B. Neuenschwander, M. Mac Donald, M. B. Roos, and H. P. Weber, IEEE J. Quantum Electron. 34, 1047 (1998).
[CrossRef]

Niziev, V. G.

V. G. Niziev and A. V. Nesterov, J. Phys. D 32, 1455 (1999).
[CrossRef]

V. Nesterov, V. G. Niziev, and V. P. Yakunin, J. Phys. D 32, 2871 (1999).
[CrossRef]

Oron, R.

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, Appl. Phys. Lett. 77, 3322 (2000).
[CrossRef]

Pohl, D.

D. Pohl, Appl. Phys. Lett. 20, 266 (1972).
[CrossRef]

Roos, M. B.

R. Weber, B. Neuenschwander, M. Mac Donald, M. B. Roos, and H. P. Weber, IEEE J. Quantum Electron. 34, 1047 (1998).
[CrossRef]

Sato, S.

Sato, T.

Shirakawa, A.

Ueda, K. I.

Weber, H. P.

R. Weber, B. Neuenschwander, M. Mac Donald, M. B. Roos, and H. P. Weber, IEEE J. Quantum Electron. 34, 1047 (1998).
[CrossRef]

Weber, R.

R. Weber, B. Neuenschwander, M. Mac Donald, M. B. Roos, and H. P. Weber, IEEE J. Quantum Electron. 34, 1047 (1998).
[CrossRef]

Yakunin, V. P.

V. Nesterov, V. G. Niziev, and V. P. Yakunin, J. Phys. D 32, 2871 (1999).
[CrossRef]

Yoo, T.-K.

J.-M. Lee, J.-H. Jang, and T.-K. Yoo, Appl. Phys. A 70, 561 (2000).
[CrossRef]

Youngworth, K. S.

Zhong, L. X.

Appl. Opt. (1)

Appl. Phys. A (2)

C. Lehane and H. S. Kwok, Appl. Phys. A 73, 45 (2001).
[CrossRef]

J.-M. Lee, J.-H. Jang, and T.-K. Yoo, Appl. Phys. A 70, 561 (2000).
[CrossRef]

Appl. Phys. Lett. (2)

D. Pohl, Appl. Phys. Lett. 20, 266 (1972).
[CrossRef]

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, Appl. Phys. Lett. 77, 3322 (2000).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. Weber, B. Neuenschwander, M. Mac Donald, M. B. Roos, and H. P. Weber, IEEE J. Quantum Electron. 34, 1047 (1998).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

A. Ashkin, IEEE J. Sel. Top. Quantum Electron. 6, 841 (2000).
[CrossRef]

J. Phys. D (2)

V. G. Niziev and A. V. Nesterov, J. Phys. D 32, 1455 (1999).
[CrossRef]

V. Nesterov, V. G. Niziev, and V. P. Yakunin, J. Phys. D 32, 2871 (1999).
[CrossRef]

Opt. Express (1)

Opt. Lett. (2)

Proc. SPIE (1)

K. S. Youngworth and T. G. Brown, Proc. SPIE 3919, 75 (2000).
[CrossRef]

Other (1)

W. Koechner, Solid State Laser Engineering, 6th ed. (Springer, 2006), Chap. 8.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup of Nd:YAG microchip laser. Only the rear surface of the gain microchip was connected to water cooling.

Fig. 2
Fig. 2

Averaged output power of the laser as a function of the absorbed pump power

Fig. 3
Fig. 3

(a) Far- and (b) near-field intensity distributions of the full beam profile; (c)–(f) variations of far-field intensity distributions of the passage beam through the polarizer analyzer with different orientations of the polarizer axes (where white arrows indict the directions of the polarizer analyzer’s axis).

Fig. 4
Fig. 4

Observed oscilloscope traces of (a) laser pulse train and (b) pulse envelope at P abs = 3.9 W .

Fig. 5
Fig. 5

Repetition rate, pulse energy, pulse width, and peak power of a passively Q-switched Nd:YAG microchip as the function of absorbed pump power.

Metrics