Abstract

By means of a difference-frequency-generation (DFG) process driven by a two-branch Er-doped fiber laser at a stabilized 100MHz repetition rate, broadly tunable pulses from 5to12μm are generated with an unprecedented power level of around 100μW. The mid-IR pulse train is expected to exhibit an harmonic comb structure as a result of the cancellation of the carrier-envelope offset frequency resulting from the DFG process.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. Cundiff, Science 288, 635 (2000).
    [CrossRef] [PubMed]
  2. T. Udem, R. Holzwarth, and T. W. Hänsch, Nature 416, 233 (2002).
    [CrossRef] [PubMed]
  3. M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, Science 311, 1595 (2006).
    [CrossRef] [PubMed]
  4. M. J. Thorpe and J. Ye, Appl. Phys. B 91, 397 (2008).
    [CrossRef]
  5. F. Keilmann, C. Gohle, and R. Holzwarth, Opt. Lett. 29, 1542 (2004).
    [CrossRef] [PubMed]
  6. M. J. Thorpe, D. Balslev-Clausen, M. S. Kirchner, and J. Ye, Opt. Express 16, 2387 (2008).
    [CrossRef] [PubMed]
  7. A. Schliesser, M. Brehm, F. Keilmann, and D. van der Weide, Opt. Express 13, 9029 (2005).
    [CrossRef] [PubMed]
  8. A. Baltuska, T. Fuji, and T. Kobayashi, Phys. Rev. Lett. 88, 133901 (2002).
    [CrossRef] [PubMed]
  9. R. A. Kaindl, F. Eickemeyer, M. Woerner, and T. Elsaesser, Appl. Phys. Lett. 75, 1060 (1999).
    [CrossRef]
  10. P. Malara, P. Maddaloni, G. Gagliardi, and P. De Natale, Opt. Express 16, 8242 (2008).
    [CrossRef] [PubMed]
  11. C. Erny, K. Moutzouris, J. Biegert, D. Kühlke, F. Adler, A. Leitenstorfer, and U. Keller, Opt. Lett. 32, 1138 (2007).
    [CrossRef] [PubMed]
  12. J. H. Sun, B. J. S. Gale, and D. T. Reid, Opt. Lett. 32, 1414 (2007).
    [CrossRef] [PubMed]
  13. F. Adler, K. Moutzouris, A. Leitenstorfer, H. Schnatz, B. Lipphardt, G. Groshe, and F. Tauser, Opt. Express 12, 5872 (2004).
    [CrossRef] [PubMed]
  14. E. Zeek, K. Maginnis, S. Backus, U. Russek, M. Murnane, G. Mourou, and H. Kapteyn, Opt. Lett. 24, 493 (1999).
    [CrossRef]

2008 (3)

2007 (2)

2006 (1)

M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, Science 311, 1595 (2006).
[CrossRef] [PubMed]

2005 (1)

2004 (2)

2002 (2)

T. Udem, R. Holzwarth, and T. W. Hänsch, Nature 416, 233 (2002).
[CrossRef] [PubMed]

A. Baltuska, T. Fuji, and T. Kobayashi, Phys. Rev. Lett. 88, 133901 (2002).
[CrossRef] [PubMed]

2000 (1)

D. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. Cundiff, Science 288, 635 (2000).
[CrossRef] [PubMed]

1999 (2)

R. A. Kaindl, F. Eickemeyer, M. Woerner, and T. Elsaesser, Appl. Phys. Lett. 75, 1060 (1999).
[CrossRef]

E. Zeek, K. Maginnis, S. Backus, U. Russek, M. Murnane, G. Mourou, and H. Kapteyn, Opt. Lett. 24, 493 (1999).
[CrossRef]

Adler, F.

Backus, S.

Balslev-Clausen, D.

Baltuska, A.

A. Baltuska, T. Fuji, and T. Kobayashi, Phys. Rev. Lett. 88, 133901 (2002).
[CrossRef] [PubMed]

Biegert, J.

Brehm, M.

Cundiff, S.

D. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. Cundiff, Science 288, 635 (2000).
[CrossRef] [PubMed]

De Natale, P.

Diddams, S. A.

D. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. Cundiff, Science 288, 635 (2000).
[CrossRef] [PubMed]

Eickemeyer, F.

R. A. Kaindl, F. Eickemeyer, M. Woerner, and T. Elsaesser, Appl. Phys. Lett. 75, 1060 (1999).
[CrossRef]

Elsaesser, T.

R. A. Kaindl, F. Eickemeyer, M. Woerner, and T. Elsaesser, Appl. Phys. Lett. 75, 1060 (1999).
[CrossRef]

Erny, C.

Fuji, T.

A. Baltuska, T. Fuji, and T. Kobayashi, Phys. Rev. Lett. 88, 133901 (2002).
[CrossRef] [PubMed]

Gagliardi, G.

Gale, B. J. S.

Gohle, C.

Groshe, G.

Hall, J. L.

D. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. Cundiff, Science 288, 635 (2000).
[CrossRef] [PubMed]

Hänsch, T. W.

T. Udem, R. Holzwarth, and T. W. Hänsch, Nature 416, 233 (2002).
[CrossRef] [PubMed]

Holzwarth, R.

Jones, D.

D. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. Cundiff, Science 288, 635 (2000).
[CrossRef] [PubMed]

Jones, R. J.

M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, Science 311, 1595 (2006).
[CrossRef] [PubMed]

Kaindl, R. A.

R. A. Kaindl, F. Eickemeyer, M. Woerner, and T. Elsaesser, Appl. Phys. Lett. 75, 1060 (1999).
[CrossRef]

Kapteyn, H.

Keilmann, F.

Keller, U.

Kirchner, M. S.

Kobayashi, T.

A. Baltuska, T. Fuji, and T. Kobayashi, Phys. Rev. Lett. 88, 133901 (2002).
[CrossRef] [PubMed]

Kühlke, D.

Leitenstorfer, A.

Lipphardt, B.

Maddaloni, P.

Maginnis, K.

Malara, P.

Moll, K. D.

M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, Science 311, 1595 (2006).
[CrossRef] [PubMed]

Mourou, G.

Moutzouris, K.

Murnane, M.

Ranka, J. K.

D. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. Cundiff, Science 288, 635 (2000).
[CrossRef] [PubMed]

Reid, D. T.

Russek, U.

Safdi, B.

M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, Science 311, 1595 (2006).
[CrossRef] [PubMed]

Schliesser, A.

Schnatz, H.

Stentz, A.

D. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. Cundiff, Science 288, 635 (2000).
[CrossRef] [PubMed]

Sun, J. H.

Tauser, F.

Thorpe, M. J.

M. J. Thorpe and J. Ye, Appl. Phys. B 91, 397 (2008).
[CrossRef]

M. J. Thorpe, D. Balslev-Clausen, M. S. Kirchner, and J. Ye, Opt. Express 16, 2387 (2008).
[CrossRef] [PubMed]

M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, Science 311, 1595 (2006).
[CrossRef] [PubMed]

Udem, T.

T. Udem, R. Holzwarth, and T. W. Hänsch, Nature 416, 233 (2002).
[CrossRef] [PubMed]

van der Weide, D.

Windeler, R. S.

D. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. Cundiff, Science 288, 635 (2000).
[CrossRef] [PubMed]

Woerner, M.

R. A. Kaindl, F. Eickemeyer, M. Woerner, and T. Elsaesser, Appl. Phys. Lett. 75, 1060 (1999).
[CrossRef]

Ye, J.

M. J. Thorpe, D. Balslev-Clausen, M. S. Kirchner, and J. Ye, Opt. Express 16, 2387 (2008).
[CrossRef] [PubMed]

M. J. Thorpe and J. Ye, Appl. Phys. B 91, 397 (2008).
[CrossRef]

M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, Science 311, 1595 (2006).
[CrossRef] [PubMed]

Zeek, E.

Appl. Phys. B (1)

M. J. Thorpe and J. Ye, Appl. Phys. B 91, 397 (2008).
[CrossRef]

Appl. Phys. Lett. (1)

R. A. Kaindl, F. Eickemeyer, M. Woerner, and T. Elsaesser, Appl. Phys. Lett. 75, 1060 (1999).
[CrossRef]

Nature (1)

T. Udem, R. Holzwarth, and T. W. Hänsch, Nature 416, 233 (2002).
[CrossRef] [PubMed]

Opt. Express (4)

Opt. Lett. (4)

Phys. Rev. Lett. (1)

A. Baltuska, T. Fuji, and T. Kobayashi, Phys. Rev. Lett. 88, 133901 (2002).
[CrossRef] [PubMed]

Science (2)

D. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and S. Cundiff, Science 288, 635 (2000).
[CrossRef] [PubMed]

M. J. Thorpe, K. D. Moll, R. J. Jones, B. Safdi, and J. Ye, Science 311, 1595 (2006).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Spectral intensity of the 1.55 μ m laser output (solid bold curve) and of the long wavelength peaks (gray curves with symbols) that can be extracted from the SC output by changing the chirp of the pulses entering the nonlinear fiber. The short wavelength part of the SC is filtered out by means of a 4 f spectral shaper. (b) Autocorrelation trace of the signal when tuned to 1.95 μ m .

Fig. 2
Fig. 2

(a) Pump-signal (black solid curve) and pump-idler (gray solid curve) temporal walk-off as a function of signal wavelength for a GaSe crystal pumped at 1.55 μ m . The dashed curve gives the corresponding idler wavelength. (b) Spatial walk-off angle as a function of signal wavelength. The vertical dotted lines define the amplification region for the signal.

Fig. 3
Fig. 3

Scheme of the experimental setup used for the generation and characterization of the mid-IR pulses. PR, polarization rotator; CYL1, cylindrical lens, f = 200 mm ; CYL2, cylindrical lens, f = 75 mm ; P, prism; CM, concave mirror; MC, monochromator; BC, beam-chopper; PD, pyroelectric detector.

Fig. 4
Fig. 4

(a) Mid-IR spectra as obtained by tuning the signal center wavelength from 1.75 to 1.95 μ m and by changing the phase-matching angle accordingly. (b) Average optical power associated with the spectra.

Metrics