Abstract

Based on weak fluctuation theory and the beam-wander model, the bit-error rate of a ground-to-satellite laser uplink communication system is analyzed, in comparison with the condition in which beam wander is not taken into account. Considering the combined effect of scintillation and beam wander, optimum divergence angle and transmitter beam radius for a communication system are researched. Numerical results show that both of them increase with the increment of total link margin and transmitted wavelength. This work can benefit the ground-to-satellite laser uplink communication system design.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media (SPIE Optical Engineering Press, 1998).
  2. L. C. Andrews, R. L. Phillips, and P. T. Yu, Appl. Opt. 34, 7742 (1995).
    [CrossRef] [PubMed]
  3. F. Dios, J. A. Rubio, A. Rodriguez, and A. Comeronn, Appl. Opt. 43, 3866 (2004).
    [CrossRef] [PubMed]
  4. A. Rodriguez-Gomez, F. Dios, J. A. Rubio, and A. Comeron, Appl. Opt. 44, 4574 (2005).
    [CrossRef] [PubMed]
  5. W. B. Miller, J. C. Ricklin, and L. C. Andrews, J. Opt. Soc. Am. A 11, 2719 (1994).
    [CrossRef]
  6. M. Toyoshima, T. Jono, K. Nakagawa, and A. Yamamoto, J. Opt. Soc. Am. A 19, 567 (2002).
    [CrossRef]

2005 (1)

2004 (1)

2002 (1)

1995 (1)

1994 (1)

Andrews, L. C.

Comeron, A.

Comeronn, A.

Dios, F.

Jono, T.

Miller, W. B.

Nakagawa, K.

Phillips, R. L.

L. C. Andrews, R. L. Phillips, and P. T. Yu, Appl. Opt. 34, 7742 (1995).
[CrossRef] [PubMed]

L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media (SPIE Optical Engineering Press, 1998).

Ricklin, J. C.

Rodriguez, A.

Rodriguez-Gomez, A.

Rubio, J. A.

Toyoshima, M.

Yamamoto, A.

Yu, P. T.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

BER m and BER 0 as a function of fade margin, with λ = 514.5 nm , W 0 = 7.5 cm , and θ = 30 μ rad .

Fig. 2
Fig. 2

BER m as a function of divergence angle for various wavelengths, with W 0 = 7.5 cm and M a = 95 dB .

Fig. 3
Fig. 3

Optimum divergence angle as a function of M a for various wavelengths, with W 0 = 7.5 cm .

Fig. 4
Fig. 4

BER m as a function of W 0 for various divergence angles, with λ = 800 nm and M a = 100 dB .

Fig. 5
Fig. 5

Optimum W 0 as a function of M a for various wavelengths, with θ = 30 μ rad .

Equations (20)

Equations on this page are rendered with MathJax. Learn more.

p ( I ) = 1 I 2 π σ I 2 exp [ ( ln I I ( 0 , L ) + 2 r 2 W 2 + σ I 2 2 ) 2 2 σ I 2 ] ,
σ I 2 = σ I 2 ( 0 , L ) + σ I 2 ( r , L ) ,
σ I 2 ( 0 , L ) = 8.702 μ 1 k 7 6 ( H h 0 ) 5 6 sec 11 6 ( ζ ) ,
σ I 2 ( r , L ) = 14.508 μ 2 Λ 5 6 k 7 6 ( H h 0 ) 5 6 sec 11 6 ( ζ ) ( r 2 W 2 ) ,
μ 1 = Re h 0 H C n 2 ( h ) { ξ 5 6 [ Λ ξ + i ( 1 L R ξ ) ] 5 6 Λ 5 6 ξ 5 3 } d h ,
μ 2 = h 0 H C n 2 ( h ) ( 1 h h 0 H h 0 ) 5 3 d h .
C n 2 ( h ) = 0.00594 ( v 27 ) 2 ( 10 5 h ) 10 exp ( h 1000 ) + 2.7 × 10 16 exp ( h 1500 ) + A exp ( h 100 ) ,
BER = 1 2 P ( I I T ) = 1 2 0 I T p ( I ) d I ,
BER = 1 4 erfc [ 0.23 M 2 r 2 W 2 σ I 2 2 2 σ I ] ,
erfc ( x ) = 2 π x e t 2 d t ,
I ( 0 , L ) = α P T D 2 2 W 2 ,
M = M a + 10 lg ( α D 2 2 W 2 ) .
p ( r ) = r σ r 2 exp ( r 2 2 σ r 2 ) ,
σ r 2 = 2.87 L 2 W 0 1 3 h 0 H C n 2 ( h ) d h ,
W e = W [ 1 + 4.35 μ 2 Λ 5 6 k 7 6 ( H h 0 ) 5 6 sec 11 6 ( ζ ) ] 1 2 ,
W st = ( W e 2 σ r 2 ) 1 2 .
BER m = 0 BER p ( r ) d r .
p w ( I ) = 2 BER m d I T = 0 p ( I ) p ( r ) d r .
d BER m d θ = 0 .
d BER m d W 0 = 0 .

Metrics