Abstract

For optically interrogating substances overlaid by turbid media, a method of wavefront manipulation by means of binary phase masking is proposed. Through altering the degree of mode matching between the fields reaching the collection optics and the field distribution of the propagation mode of single-mode waveguides, the proposed method can be used to suppress the collection of short-range light originated near the collection optics while permitting unimpeded collection of light originated from sites substantially behind turbid media. General description of the principles is accompanied by a numerical modeling. A group of binary phase masks, mutually orthogonal, are introduced for practical applications.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. R. Mourant and I. J. Bigio, Biomedical Photonics Handbook, T.Vo-Dinh, ed. (CRC Press, 2003).
  2. A. A. Stratonnikov, G. A. Meerovich, A. V. Ryabova, T. A. Savel'eva, and V. B. Loshchenov, Quantum Electron. 36, 1103 (2006).
    [CrossRef]
  3. A. Labeyrie, S. G. Lopson, and P. Nisenson, An Introduction to Optical Stellar Interferometry (Cambridge U. Press, 2006).
    [CrossRef]
  4. Y. Dikmelik and F. M. Davidson, Appl. Opt. 44, 4946 (2005).
    [CrossRef] [PubMed]
  5. K. Maruo, M. Tsurugi, M. Tamur, and Y. Ozaki, Appl. Spectrosc. 57, 1236 (2003).
    [CrossRef] [PubMed]
  6. E. E. Bloemhof, Astrophys. J. Lett. 582, L59 (2003).
    [CrossRef]
  7. Y. Zhang, S. Poonja, and A. Roorda, Opt. Lett. 31, 1268 (2006).
    [CrossRef] [PubMed]
  8. E. G. Neumann, Single-Mode Fibers: Fundamentals, Springer Series in Optical Sciences, T.Tamir, ed. (Springer-Verlag, 1988).
  9. A. Yariv and P. Yeh, Optical Waves in Crystals (John Wiley and Sons, 1984).
  10. J. M. Schmitt and G. Kumar, Opt. Lett. 16, 1310 (1996).
    [CrossRef]
  11. J. M. Schmitt and G. Kumar, Appl. Opt. 37, 2788 (1998).
    [CrossRef]
  12. O. Funk and K. Pfeilsticker, Ann. Geophys. 21, 615 (2003).
    [CrossRef]
  13. J. R. Mourant, I. J. Bigio, D. A. Jack, T. M. Johnson, and H. D. Miller, Appl. Opt. 36, 5655 (1997).
    [CrossRef] [PubMed]
  14. V. Sankaran, K. Schnenberger, J. T. Walsh, and D. J. Maitland, Appl. Opt. 38, 4252 (1999).
    [CrossRef]

2006 (2)

A. A. Stratonnikov, G. A. Meerovich, A. V. Ryabova, T. A. Savel'eva, and V. B. Loshchenov, Quantum Electron. 36, 1103 (2006).
[CrossRef]

Y. Zhang, S. Poonja, and A. Roorda, Opt. Lett. 31, 1268 (2006).
[CrossRef] [PubMed]

2005 (1)

2003 (3)

E. E. Bloemhof, Astrophys. J. Lett. 582, L59 (2003).
[CrossRef]

O. Funk and K. Pfeilsticker, Ann. Geophys. 21, 615 (2003).
[CrossRef]

K. Maruo, M. Tsurugi, M. Tamur, and Y. Ozaki, Appl. Spectrosc. 57, 1236 (2003).
[CrossRef] [PubMed]

1999 (1)

1998 (1)

1997 (1)

1996 (1)

Bigio, I. J.

J. R. Mourant, I. J. Bigio, D. A. Jack, T. M. Johnson, and H. D. Miller, Appl. Opt. 36, 5655 (1997).
[CrossRef] [PubMed]

J. R. Mourant and I. J. Bigio, Biomedical Photonics Handbook, T.Vo-Dinh, ed. (CRC Press, 2003).

Bloemhof, E. E.

E. E. Bloemhof, Astrophys. J. Lett. 582, L59 (2003).
[CrossRef]

Davidson, F. M.

Dikmelik, Y.

Funk, O.

O. Funk and K. Pfeilsticker, Ann. Geophys. 21, 615 (2003).
[CrossRef]

Jack, D. A.

Johnson, T. M.

Kumar, G.

Labeyrie, A.

A. Labeyrie, S. G. Lopson, and P. Nisenson, An Introduction to Optical Stellar Interferometry (Cambridge U. Press, 2006).
[CrossRef]

Lopson, S. G.

A. Labeyrie, S. G. Lopson, and P. Nisenson, An Introduction to Optical Stellar Interferometry (Cambridge U. Press, 2006).
[CrossRef]

Loshchenov, V. B.

A. A. Stratonnikov, G. A. Meerovich, A. V. Ryabova, T. A. Savel'eva, and V. B. Loshchenov, Quantum Electron. 36, 1103 (2006).
[CrossRef]

Maitland, D. J.

Maruo, K.

Meerovich, G. A.

A. A. Stratonnikov, G. A. Meerovich, A. V. Ryabova, T. A. Savel'eva, and V. B. Loshchenov, Quantum Electron. 36, 1103 (2006).
[CrossRef]

Miller, H. D.

Mourant, J. R.

J. R. Mourant, I. J. Bigio, D. A. Jack, T. M. Johnson, and H. D. Miller, Appl. Opt. 36, 5655 (1997).
[CrossRef] [PubMed]

J. R. Mourant and I. J. Bigio, Biomedical Photonics Handbook, T.Vo-Dinh, ed. (CRC Press, 2003).

Neumann, E. G.

E. G. Neumann, Single-Mode Fibers: Fundamentals, Springer Series in Optical Sciences, T.Tamir, ed. (Springer-Verlag, 1988).

Nisenson, P.

A. Labeyrie, S. G. Lopson, and P. Nisenson, An Introduction to Optical Stellar Interferometry (Cambridge U. Press, 2006).
[CrossRef]

Ozaki, Y.

Pfeilsticker, K.

O. Funk and K. Pfeilsticker, Ann. Geophys. 21, 615 (2003).
[CrossRef]

Poonja, S.

Roorda, A.

Ryabova, A. V.

A. A. Stratonnikov, G. A. Meerovich, A. V. Ryabova, T. A. Savel'eva, and V. B. Loshchenov, Quantum Electron. 36, 1103 (2006).
[CrossRef]

Sankaran, V.

Savel'eva, T. A.

A. A. Stratonnikov, G. A. Meerovich, A. V. Ryabova, T. A. Savel'eva, and V. B. Loshchenov, Quantum Electron. 36, 1103 (2006).
[CrossRef]

Schmitt, J. M.

Schnenberger, K.

Stratonnikov, A. A.

A. A. Stratonnikov, G. A. Meerovich, A. V. Ryabova, T. A. Savel'eva, and V. B. Loshchenov, Quantum Electron. 36, 1103 (2006).
[CrossRef]

Tamur, M.

Tsurugi, M.

Walsh, J. T.

Yariv, A.

A. Yariv and P. Yeh, Optical Waves in Crystals (John Wiley and Sons, 1984).

Yeh, P.

A. Yariv and P. Yeh, Optical Waves in Crystals (John Wiley and Sons, 1984).

Zhang, Y.

Ann. Geophys. (1)

O. Funk and K. Pfeilsticker, Ann. Geophys. 21, 615 (2003).
[CrossRef]

Appl. Opt. (4)

Appl. Spectrosc. (1)

Astrophys. J. Lett. (1)

E. E. Bloemhof, Astrophys. J. Lett. 582, L59 (2003).
[CrossRef]

Opt. Lett. (2)

Quantum Electron. (1)

A. A. Stratonnikov, G. A. Meerovich, A. V. Ryabova, T. A. Savel'eva, and V. B. Loshchenov, Quantum Electron. 36, 1103 (2006).
[CrossRef]

Other (4)

A. Labeyrie, S. G. Lopson, and P. Nisenson, An Introduction to Optical Stellar Interferometry (Cambridge U. Press, 2006).
[CrossRef]

E. G. Neumann, Single-Mode Fibers: Fundamentals, Springer Series in Optical Sciences, T.Tamir, ed. (Springer-Verlag, 1988).

A. Yariv and P. Yeh, Optical Waves in Crystals (John Wiley and Sons, 1984).

J. R. Mourant and I. J. Bigio, Biomedical Photonics Handbook, T.Vo-Dinh, ed. (CRC Press, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Reflection-mode optical measurement system using a single-mode fiber and a binary phase mask. The half-field phase mask has a phase step of π in the middle of the field distribution that corresponds to the fundamental propagation mode of the fiber.

Fig. 2
Fig. 2

Evolution of the differential phase between two partial wavefronts as a result of propagating through different optical paths in the modeled turbid medium. Results from 100 pairs of random paths are presented.

Fig. 3
Fig. 3

Ensemble-averaged collection of light backscattered per unit depth as a function of the depth, derived from Eq. (4) by assuming an uniform backscattering power in the medium. The solid curves are for the presence of the half-field phase mask; the dashed curves are for the absence of the mask. The inset displays the optical energy in logarithm scale.

Fig. 4
Fig. 4

Phase patterns for the binary phase mask. All, except Pattern 0, have zero overlap integral with the field associated with the fundamental propagation mode of the fiber.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ξ = A e ( x 2 + y 2 ) w 2 E s * ( x , y ) d x d y 2 ,
ξ = x < 0 e ( x 2 + y 2 ) w 2 E s * ( x , y ) d x d y x < 0 e ( x 2 + y 2 ) w 2 E s * ( x , y ) d x d y 2 .
Δ Φ = 2 π λ [ S j ( n + δ n j ) right S j ( n + δ n j ) left ] .
i = C e 2 μ d [ 1 + cos ( Δ Φ + χ ) ] ,

Metrics