Abstract

We introduce a new method to make gradient index (GRIN) lenses and GRIN lens arrays by exposing diffusion-driven photopolymers using a low-power CW laser. By changing the size and power of the laser beam and the exposure time the index profile of the GRIN lens can be controlled. Combined with the self-developing nature of the photopolymer, this enables rapid “on-demand” printing of arbitrary micro-optics. We also introduce a new form of scanning phase microscopy that is conveniently integrated into the lens exposure hardware, providing accurate process monitoring.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. T. Moore, Appl. Opt. 19, 1035 (1980).
    [CrossRef] [PubMed]
  2. S. Ohmi, Appl. Opt. 27, 496 (1988).
    [CrossRef] [PubMed]
  3. P. Nussbaum, Pure Appl. Opt. 6, 617 (1997).
    [CrossRef]
  4. S. Mihailov and S. Lazare, Appl. Opt. 32, 6211 (1993).
    [CrossRef] [PubMed]
  5. F. Beinhorn, Appl. Phys. A 68, 709 (1999).
    [CrossRef]
  6. N. F. Borrelli, Appl. Opt. 24, 2520 (1985).
    [CrossRef] [PubMed]
  7. Y. L. Li, Optik (Jena) 118, 395 (2007).
  8. K. A. Berchtold, T. M. Lovestead, and C. N. Bowman, Macromolecules 35, 7968 (2002).
    [CrossRef]
  9. A. S. Kewitsch and A. Yariv, Opt. Lett. 21, 24 (1996).
    [CrossRef] [PubMed]
  10. A. C. Sullivan, M. W. Grabowski, and R. R. McLeod, Appl. Opt. 46, 295 (2007).
    [CrossRef] [PubMed]
  11. L. Dhar, A. Hale, H. E. Katz, L. Schilling, M. G. Schnoes, and F. C. Schilling, Opt. Lett. 24, 487 (1999).
    [CrossRef]
  12. M. R. Ayres, and R. R. McLeod, Appl. Opt. 45, 8410 (2006).
    [CrossRef] [PubMed]
  13. Gradient Index (GRIN) Lenses, http://www.grintech.de.

2007 (2)

2006 (1)

2002 (1)

K. A. Berchtold, T. M. Lovestead, and C. N. Bowman, Macromolecules 35, 7968 (2002).
[CrossRef]

1999 (2)

1997 (1)

P. Nussbaum, Pure Appl. Opt. 6, 617 (1997).
[CrossRef]

1996 (1)

1993 (1)

1988 (1)

1985 (1)

1980 (1)

Ayres, M. R.

Beinhorn, F.

F. Beinhorn, Appl. Phys. A 68, 709 (1999).
[CrossRef]

Berchtold, K. A.

K. A. Berchtold, T. M. Lovestead, and C. N. Bowman, Macromolecules 35, 7968 (2002).
[CrossRef]

Borrelli, N. F.

Bowman, C. N.

K. A. Berchtold, T. M. Lovestead, and C. N. Bowman, Macromolecules 35, 7968 (2002).
[CrossRef]

Dhar, L.

Grabowski, M. W.

Hale, A.

Katz, H. E.

Kewitsch, A. S.

Lazare, S.

Li, Y. L.

Y. L. Li, Optik (Jena) 118, 395 (2007).

Lovestead, T. M.

K. A. Berchtold, T. M. Lovestead, and C. N. Bowman, Macromolecules 35, 7968 (2002).
[CrossRef]

McLeod, R. R.

Mihailov, S.

Moore, D. T.

Nussbaum, P.

P. Nussbaum, Pure Appl. Opt. 6, 617 (1997).
[CrossRef]

Ohmi, S.

Schilling, F. C.

Schilling, L.

Schnoes, M. G.

Sullivan, A. C.

Yariv, A.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Optical layout for the direct-write lithography system, consisting of a frequency-doubled Nd:YAG laser, a spatial filter, a collimation lens, a shutter, and a focusing lens.

Fig. 2
Fig. 2

Optical layout for the direct-write lithography system and the integrated differential transmission microscope used to measure the resulting index profiles.

Fig. 3
Fig. 3

Experimental demonstration of a GRIN lens with an exposure power of 30 μ W , a beam diameter of 500 μ m , and an exposure time of 11 s : (a) measured index profile of the GRIN lens; (b) horizontal ( x ) and vertical ( y ) line plots through the center of the measured index profile and a parabolic fit (dashed curve)

Fig. 4
Fig. 4

Experiment demonstration of a GRIN lens array with an exposure power of 7 μ W , an exposure time of 10 s , an exposure beam diameter of 100 μ m , and a period of 200 μ m : (a) phase profile obtained from a DIC microscope; (b) measured index profile using the differential transmission phase microscope.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

p x ( x , y ) = d n ( x , y ) L d x f ,
p y ( x , y ) = d n ( x , y ) L d y f ,
n ( k x , k y ) = j f L [ k x ( k x 2 + k y 2 ) P x ( k x , k y ) + k y ( k x 2 + k y 2 ) P y ( k x , k y ) ] ,

Metrics