Abstract

The influence of material and thickness on the subwavelength imaging performance of a negative dielectric constant slab is studied. Resonance in the plane-wave transfer function produces a high spatial frequency ripple that could be useful in fabricating periodic structures. A cost function based on the plane-wave transfer function provides a useful metric to evaluate the planar slab lens performance, and using this, the optimal slab dielectric constant can be determined.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. G. Veselago, Sov. Phys. Usp. 10, 509 (1968).
    [CrossRef]
  2. J. B. Pendry, Phys. Rev. Lett. 85, 3966 (2000).
    [CrossRef] [PubMed]
  3. K. J. Webb, M. Yang, D. W. Ward, and K. A. Nelson, Phys. Rev. E 70, 035602 (2004).
    [CrossRef]
  4. M. Yang and K. J. Webb, Opt. Lett. 30, 2382 (2005).
    [CrossRef] [PubMed]
  5. N. Fang, H. Lee, C. Sun, and X. Zhang, Science 308, 534 (2005).
    [CrossRef] [PubMed]
  6. D. Korobkin, Y. Urzhumov, and G. Shevts, J. Opt. Soc. Am. B 23, 468 (2006).
    [CrossRef]
  7. R. J. Blaikie, D. O. Melville, and M. M. Alkaisi, Microelectron. Eng. 83, 723 (2006).
    [CrossRef]
  8. I. I. Smolyaninov, Y.-J. Hung, and C. C. Davis, Science 315, 1699 (2007).
    [CrossRef] [PubMed]
  9. K. J. Webb and M. Yang, Opt. Lett. 31, 2130 (2006).
    [CrossRef] [PubMed]

2007

I. I. Smolyaninov, Y.-J. Hung, and C. C. Davis, Science 315, 1699 (2007).
[CrossRef] [PubMed]

2006

2005

M. Yang and K. J. Webb, Opt. Lett. 30, 2382 (2005).
[CrossRef] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, Science 308, 534 (2005).
[CrossRef] [PubMed]

2004

K. J. Webb, M. Yang, D. W. Ward, and K. A. Nelson, Phys. Rev. E 70, 035602 (2004).
[CrossRef]

2000

J. B. Pendry, Phys. Rev. Lett. 85, 3966 (2000).
[CrossRef] [PubMed]

1968

V. G. Veselago, Sov. Phys. Usp. 10, 509 (1968).
[CrossRef]

Alkaisi, M. M.

R. J. Blaikie, D. O. Melville, and M. M. Alkaisi, Microelectron. Eng. 83, 723 (2006).
[CrossRef]

Blaikie, R. J.

R. J. Blaikie, D. O. Melville, and M. M. Alkaisi, Microelectron. Eng. 83, 723 (2006).
[CrossRef]

Davis, C. C.

I. I. Smolyaninov, Y.-J. Hung, and C. C. Davis, Science 315, 1699 (2007).
[CrossRef] [PubMed]

Fang, N.

N. Fang, H. Lee, C. Sun, and X. Zhang, Science 308, 534 (2005).
[CrossRef] [PubMed]

Hung, Y.-J.

I. I. Smolyaninov, Y.-J. Hung, and C. C. Davis, Science 315, 1699 (2007).
[CrossRef] [PubMed]

Korobkin, D.

Lee, H.

N. Fang, H. Lee, C. Sun, and X. Zhang, Science 308, 534 (2005).
[CrossRef] [PubMed]

Melville, D. O.

R. J. Blaikie, D. O. Melville, and M. M. Alkaisi, Microelectron. Eng. 83, 723 (2006).
[CrossRef]

Nelson, K. A.

K. J. Webb, M. Yang, D. W. Ward, and K. A. Nelson, Phys. Rev. E 70, 035602 (2004).
[CrossRef]

Pendry, J. B.

J. B. Pendry, Phys. Rev. Lett. 85, 3966 (2000).
[CrossRef] [PubMed]

Shevts, G.

Smolyaninov, I. I.

I. I. Smolyaninov, Y.-J. Hung, and C. C. Davis, Science 315, 1699 (2007).
[CrossRef] [PubMed]

Sun, C.

N. Fang, H. Lee, C. Sun, and X. Zhang, Science 308, 534 (2005).
[CrossRef] [PubMed]

Urzhumov, Y.

Veselago, V. G.

V. G. Veselago, Sov. Phys. Usp. 10, 509 (1968).
[CrossRef]

Ward, D. W.

K. J. Webb, M. Yang, D. W. Ward, and K. A. Nelson, Phys. Rev. E 70, 035602 (2004).
[CrossRef]

Webb, K. J.

Yang, M.

Zhang, X.

N. Fang, H. Lee, C. Sun, and X. Zhang, Science 308, 534 (2005).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B

Microelectron. Eng.

R. J. Blaikie, D. O. Melville, and M. M. Alkaisi, Microelectron. Eng. 83, 723 (2006).
[CrossRef]

Opt. Lett.

Phys. Rev. E

K. J. Webb, M. Yang, D. W. Ward, and K. A. Nelson, Phys. Rev. E 70, 035602 (2004).
[CrossRef]

Phys. Rev. Lett.

J. B. Pendry, Phys. Rev. Lett. 85, 3966 (2000).
[CrossRef] [PubMed]

Science

N. Fang, H. Lee, C. Sun, and X. Zhang, Science 308, 534 (2005).
[CrossRef] [PubMed]

I. I. Smolyaninov, Y.-J. Hung, and C. C. Davis, Science 315, 1699 (2007).
[CrossRef] [PubMed]

Sov. Phys. Usp.

V. G. Veselago, Sov. Phys. Usp. 10, 509 (1968).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Transmission spectrum T ( ϵ , k x k 0 ) , plotted on a logarithmic scale, for real ϵ and slab thickness (a) d = 0.1 μ m and (b) d = 0.3 μ m . The free-space wavelength is λ = 700 nm .

Fig. 2
Fig. 2

Transmission spectrum obtained for several slab thicknesses for (a) ϵ = 1.01 , (b) ϵ = 1.02 , and (c) ϵ = 1.1 . The solid, dashed–dotted, dotted, and dashed curves correspond to slab thickness d = 0.1 , 0.2, 0.3, and 0.4 μ m , respectively. The wavelength is λ = 700 nm .

Fig. 3
Fig. 3

(a) Transmission spectrum. (b) E (normalized to its maximum value) obtained at the image plane. The slab parameters are ϵ = 2.0 and d = 0.4 μ m . The object width is 0.05 λ , and λ = 700 nm .

Fig. 4
Fig. 4

(a) Magnitude of the transmission coefficient for a 0.1 - μ m -thick slab having various ϵ = 1.01 + j ϵ . (b) E for an object of width 0.01 λ . The line types correspond to ϵ = 0.01 (solid curve), ϵ = 0.02 (dashed curve), ϵ = 0.05 (dashed–dotted curve), ϵ = 0.1 (dotted curve). The free-space wavelength is λ = 700 nm .

Fig. 5
Fig. 5

(a) Optimal ϵ obtained from the cost function (2) for various slab thicknesses d. (b) Optimal FWHM for E as a function of slab thickness, using data from (a). A wavelength λ = 700 nm was used. The d λ scale should be interpreted as various d with λ = 700 nm . The object in (b) has width 0.01 λ .

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

T ( k x ) = ( 1 r 2 ) exp ( j k z d ) 1 r 2 exp ( j 2 k z d ) ,
C ( ϵ , d ) = F 1 ( T ( k x k 0 ) ) max [ F 1 ( T ( k x k 0 ) ) ] d x ,

Metrics