Abstract

We study the effect of stimulated Raman scattering on four-wave mixing sidebands generated by pumping in the normal dispersion regime of a photonic crystal fiber. Q-switch nanosecond pulses at 1064nm are used to generate signal and idler wavelengths by degenerate four-wave mixing. These three waves generate their own Raman Stokes orders, leading to a broadband supercontinuum.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Bloembergen and Y. R. Shen, Phys. Rev. Lett. 12, 504 (1964).
    [CrossRef]
  2. K. J. Blow and D. Wood, IEEE J. Quantum Electron. 25, 2665 (1989).
    [CrossRef]
  3. E. Golovchenko, P. V. Mamyshev, A. N. Pilipetskii, and E. M. Dianov, IEEE J. Quantum Electron. 26, 1815 (1990).
    [CrossRef]
  4. S. Trillo and S. Wabnitz, J. Opt. Soc. Am. B 9, 1061 (1992).
    [CrossRef]
  5. F. Vanholsbeeck, P. Emplit, and S. Coen, Opt. Lett. 28, 1960 (2003).
    [CrossRef] [PubMed]
  6. A. S. Y. Hsieh, G. K. L. Wong, S. G. Murdoch, S. Coen, F. Vanholsbeeck, R. Leonhardt, and J. D. Harvey, Opt. Express 15, 8104 (2007).
    [CrossRef] [PubMed]
  7. S. Coen, D. A. Wardle, and J. D. Harvey, Phys. Rev. Lett. 89, 273901 (2002).
    [CrossRef]
  8. J. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
    [CrossRef]
  9. S. Pitois, G. Millot, and P. Tchofo Dinda, Opt. Lett. 23, 1456 (1998).
    [CrossRef]
  10. A. Mussot, T. Sylvestre, L. Provino, and H. Maillotte, Opt. Lett. 28, 1820 (2003).
    [CrossRef] [PubMed]
  11. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic Press, 2007).
  12. S. Pitois and G. Millot, Opt. Commun. 226, 415 (2003).
    [CrossRef]
  13. J. D. Harvey, R. Leonhardt, S. Coen, G. K. L. Wong, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, Opt. Lett. 28, 2225 (2003).
    [CrossRef] [PubMed]
  14. W. Wadsworth, N. Joly, J. Knight, T. Birks, F. Biancalana, and P. Russell, Opt. Express 12, 299 (2004).
    [CrossRef] [PubMed]

2007 (2)

2006 (1)

J. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
[CrossRef]

2004 (1)

2003 (4)

2002 (1)

S. Coen, D. A. Wardle, and J. D. Harvey, Phys. Rev. Lett. 89, 273901 (2002).
[CrossRef]

1998 (1)

1992 (1)

1990 (1)

E. Golovchenko, P. V. Mamyshev, A. N. Pilipetskii, and E. M. Dianov, IEEE J. Quantum Electron. 26, 1815 (1990).
[CrossRef]

1989 (1)

K. J. Blow and D. Wood, IEEE J. Quantum Electron. 25, 2665 (1989).
[CrossRef]

1964 (1)

N. Bloembergen and Y. R. Shen, Phys. Rev. Lett. 12, 504 (1964).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic Press, 2007).

Biancalana, F.

Birks, T.

Bloembergen, N.

N. Bloembergen and Y. R. Shen, Phys. Rev. Lett. 12, 504 (1964).
[CrossRef]

Blow, K. J.

K. J. Blow and D. Wood, IEEE J. Quantum Electron. 25, 2665 (1989).
[CrossRef]

Coen, S.

Dianov, E. M.

E. Golovchenko, P. V. Mamyshev, A. N. Pilipetskii, and E. M. Dianov, IEEE J. Quantum Electron. 26, 1815 (1990).
[CrossRef]

Dudley, J.

J. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
[CrossRef]

Emplit, P.

Genty, G.

J. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
[CrossRef]

Golovchenko, E.

E. Golovchenko, P. V. Mamyshev, A. N. Pilipetskii, and E. M. Dianov, IEEE J. Quantum Electron. 26, 1815 (1990).
[CrossRef]

Harvey, J. D.

Hsieh, A. S. Y.

Joly, N.

Knight, J.

Knight, J. C.

Leonhardt, R.

Maillotte, H.

Mamyshev, P. V.

E. Golovchenko, P. V. Mamyshev, A. N. Pilipetskii, and E. M. Dianov, IEEE J. Quantum Electron. 26, 1815 (1990).
[CrossRef]

Millot, G.

Murdoch, S. G.

Mussot, A.

Pilipetskii, A. N.

E. Golovchenko, P. V. Mamyshev, A. N. Pilipetskii, and E. M. Dianov, IEEE J. Quantum Electron. 26, 1815 (1990).
[CrossRef]

Pitois, S.

Provino, L.

Russell, P.

Russell, P. St. J.

Shen, Y. R.

N. Bloembergen and Y. R. Shen, Phys. Rev. Lett. 12, 504 (1964).
[CrossRef]

Sylvestre, T.

Tchofo Dinda, P.

Trillo, S.

Vanholsbeeck, F.

Wabnitz, S.

Wadsworth, W.

Wadsworth, W. J.

Wardle, D. A.

S. Coen, D. A. Wardle, and J. D. Harvey, Phys. Rev. Lett. 89, 273901 (2002).
[CrossRef]

Wong, G. K. L.

Wood, D.

K. J. Blow and D. Wood, IEEE J. Quantum Electron. 25, 2665 (1989).
[CrossRef]

IEEE J. Quantum Electron. (2)

K. J. Blow and D. Wood, IEEE J. Quantum Electron. 25, 2665 (1989).
[CrossRef]

E. Golovchenko, P. V. Mamyshev, A. N. Pilipetskii, and E. M. Dianov, IEEE J. Quantum Electron. 26, 1815 (1990).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

S. Pitois and G. Millot, Opt. Commun. 226, 415 (2003).
[CrossRef]

Opt. Express (2)

Opt. Lett. (4)

Phys. Rev. Lett. (2)

N. Bloembergen and Y. R. Shen, Phys. Rev. Lett. 12, 504 (1964).
[CrossRef]

S. Coen, D. A. Wardle, and J. D. Harvey, Phys. Rev. Lett. 89, 273901 (2002).
[CrossRef]

Rev. Mod. Phys. (1)

J. Dudley, G. Genty, and S. Coen, Rev. Mod. Phys. 78, 1135 (2006).
[CrossRef]

Other (1)

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic Press, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) GVD curve of the fabricated PCF computed from a high-resolution SEM (inset). (b) Phase-matching diagram calculated with Eq. (1) with P = 2 kW corresponding to the peak power experimentally launched into the PCF for the experiments of Fig 2. Crosses depict phase-matched FWM wavelengths experimentally observed. Insets in (b) represent typical gain spectra corresponding to both dispersion regimes.

Fig. 2
Fig. 2

Evolution of the output spectrum as a function of fiber length for a pump peak power of 2 kW launched into the PCF. The vertical dotted line represents the zero-dispersion wavelength.

Fig. 3
Fig. 3

Evolution of the output spectrum as a function of launched pump peak power for a fiber length of 100 m . The vertical dotted line represents the zero dispersion wavelength.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

β 2 Ω 2 + β 4 Ω 4 12 + 2 γ P = 0 ,

Metrics