Abstract

We propose and experimentally demonstrate a novel real-time interrogation technique for a fiber Bragg grating (FBG) sensing system that is based on a frequency-shifted asymmetric Sagnac interferometer. FBG sensors are connected to the Sagnac loop by an optical coupler, and an acousto-optic modulator (AOM) is asymmetrically placed in the Sagnac loop. By linearly sweeping the driving frequency of the AOM, the environmental variation around each FBG sensor can be determined by measuring the spectrum of the interference signals of the two counterpropagating light beams reflected by the corresponding FBG. The system has the advantages of low cost and real-time sensing.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, and K. P. Koo, J. Lightwave Technol. 12, 1442 (1997).
    [CrossRef]
  2. A. D. Kersey, T. A. Berkoff, and W. W. Morey, Opt. Lett. 18, 1370 (1993).
    [CrossRef]
  3. M. A. Davis and A. D. Kersey, Electron. Lett. 30, 75 (1994).
    [CrossRef]
  4. J. L. Brooks, B. Moslehi, B. Y. Kim, and H. J. Shaw, J. Lightwave Technol. 5, 1014 (1987).
    [CrossRef]
  5. Z.-G. Guan, D. Chen, and S. He, J. Lightwave Technol. 25, 2143 (2007).
    [CrossRef]
  6. R. M. López, V. V. Spirin, M. G. Shlyagin, S. V. Miridonov, G. Beltrán, E. A. Kuzin, and A. Márquez Lucero, Opt. Fiber Technol. 10, 79 (2004).
    [CrossRef]

2007

2004

R. M. López, V. V. Spirin, M. G. Shlyagin, S. V. Miridonov, G. Beltrán, E. A. Kuzin, and A. Márquez Lucero, Opt. Fiber Technol. 10, 79 (2004).
[CrossRef]

1997

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, and K. P. Koo, J. Lightwave Technol. 12, 1442 (1997).
[CrossRef]

1994

M. A. Davis and A. D. Kersey, Electron. Lett. 30, 75 (1994).
[CrossRef]

1993

1987

J. L. Brooks, B. Moslehi, B. Y. Kim, and H. J. Shaw, J. Lightwave Technol. 5, 1014 (1987).
[CrossRef]

Beltrán, G.

R. M. López, V. V. Spirin, M. G. Shlyagin, S. V. Miridonov, G. Beltrán, E. A. Kuzin, and A. Márquez Lucero, Opt. Fiber Technol. 10, 79 (2004).
[CrossRef]

Berkoff, T. A.

Brooks, J. L.

J. L. Brooks, B. Moslehi, B. Y. Kim, and H. J. Shaw, J. Lightwave Technol. 5, 1014 (1987).
[CrossRef]

Chen, D.

Davis, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, and K. P. Koo, J. Lightwave Technol. 12, 1442 (1997).
[CrossRef]

M. A. Davis and A. D. Kersey, Electron. Lett. 30, 75 (1994).
[CrossRef]

Guan, Z.-G.

He, S.

Kersey, A. D.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, and K. P. Koo, J. Lightwave Technol. 12, 1442 (1997).
[CrossRef]

M. A. Davis and A. D. Kersey, Electron. Lett. 30, 75 (1994).
[CrossRef]

A. D. Kersey, T. A. Berkoff, and W. W. Morey, Opt. Lett. 18, 1370 (1993).
[CrossRef]

Kim, B. Y.

J. L. Brooks, B. Moslehi, B. Y. Kim, and H. J. Shaw, J. Lightwave Technol. 5, 1014 (1987).
[CrossRef]

Koo, K. P.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, and K. P. Koo, J. Lightwave Technol. 12, 1442 (1997).
[CrossRef]

Kuzin, E. A.

R. M. López, V. V. Spirin, M. G. Shlyagin, S. V. Miridonov, G. Beltrán, E. A. Kuzin, and A. Márquez Lucero, Opt. Fiber Technol. 10, 79 (2004).
[CrossRef]

LeBlanc, M.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, and K. P. Koo, J. Lightwave Technol. 12, 1442 (1997).
[CrossRef]

López, R. M.

R. M. López, V. V. Spirin, M. G. Shlyagin, S. V. Miridonov, G. Beltrán, E. A. Kuzin, and A. Márquez Lucero, Opt. Fiber Technol. 10, 79 (2004).
[CrossRef]

Márquez Lucero, A.

R. M. López, V. V. Spirin, M. G. Shlyagin, S. V. Miridonov, G. Beltrán, E. A. Kuzin, and A. Márquez Lucero, Opt. Fiber Technol. 10, 79 (2004).
[CrossRef]

Miridonov, S. V.

R. M. López, V. V. Spirin, M. G. Shlyagin, S. V. Miridonov, G. Beltrán, E. A. Kuzin, and A. Márquez Lucero, Opt. Fiber Technol. 10, 79 (2004).
[CrossRef]

Morey, W. W.

Moslehi, B.

J. L. Brooks, B. Moslehi, B. Y. Kim, and H. J. Shaw, J. Lightwave Technol. 5, 1014 (1987).
[CrossRef]

Patrick, H. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, and K. P. Koo, J. Lightwave Technol. 12, 1442 (1997).
[CrossRef]

Shaw, H. J.

J. L. Brooks, B. Moslehi, B. Y. Kim, and H. J. Shaw, J. Lightwave Technol. 5, 1014 (1987).
[CrossRef]

Shlyagin, M. G.

R. M. López, V. V. Spirin, M. G. Shlyagin, S. V. Miridonov, G. Beltrán, E. A. Kuzin, and A. Márquez Lucero, Opt. Fiber Technol. 10, 79 (2004).
[CrossRef]

Spirin, V. V.

R. M. López, V. V. Spirin, M. G. Shlyagin, S. V. Miridonov, G. Beltrán, E. A. Kuzin, and A. Márquez Lucero, Opt. Fiber Technol. 10, 79 (2004).
[CrossRef]

Electron. Lett.

M. A. Davis and A. D. Kersey, Electron. Lett. 30, 75 (1994).
[CrossRef]

J. Lightwave Technol.

J. L. Brooks, B. Moslehi, B. Y. Kim, and H. J. Shaw, J. Lightwave Technol. 5, 1014 (1987).
[CrossRef]

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, and K. P. Koo, J. Lightwave Technol. 12, 1442 (1997).
[CrossRef]

Z.-G. Guan, D. Chen, and S. He, J. Lightwave Technol. 25, 2143 (2007).
[CrossRef]

Opt. Fiber Technol.

R. M. López, V. V. Spirin, M. G. Shlyagin, S. V. Miridonov, G. Beltrán, E. A. Kuzin, and A. Márquez Lucero, Opt. Fiber Technol. 10, 79 (2004).
[CrossRef]

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic diagram of the present FBG interrogation system based on a Sagnac interferometer. The inset shows the reflection spectra of the reference FBG and five sensing FBGs. BBS, broadband source; OC, optical circulator; IMG, index-matching glue; ISO, optical isolator; AOM, acoustio-optical modulator; PD, photodetector; DAQ, data-acquisition card; FFT, fast Fourier transform.

Fig. 2
Fig. 2

Experimental results: (a) the measured signal received by the PD, (b) the spectrum of the signal.

Fig. 3
Fig. 3

Variation of the five peaks in the spectrum when the temperature around the first sensing FBG increases and the strain is applied to the third sensing FBG while keeping the other FBGs unchanged.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Δ ϕ CW i = 2 π n [ L a + L c + 2 L i c ν + L b c ( ν + Δ ν ) ] + π 2 ,
Δ ϕ CCW i = 2 π n [ L b c ν + L a + L c + 2 L i c ( ν + Δ ν ) ] + π 2 + π ,
Δ ϕ = Δ ϕ CW i Δ ϕ CCW i = 2 π n L a + L c + 2 L i L b c Δ ν π .
I = 1 cos ( 2 π n L a + L c + 2 L i L b c Δ ν ) .
f i = 2 π n L a + L c + 2 L i L b c ω .
A i = P K λ R ref ( λ ) R i ( λ + Δ λ i ) ( 1 I L i ) 2 n = 1 i 1 ( 1 I L n ) 2 [ 1 R n ( λ + Δ λ n ) ] 2 d λ ,
A i = P K λ R ref ( λ ) R i ( λ + Δ λ i ) n = 1 i ( 1 I L n ) 2 d λ .

Metrics