Abstract

A novel implementation of quantum-noise optical cryptography is proposed, which is based on a simplified architecture that allows long-haul, high-speed transmission in a fiber optical network. By using a single multiport encoder/decoder and 16 phase shifters, this new approach can provide the same confidentiality as other implementations of Yuen’s encryption protocol, which use a larger number of phase or polarization coherent states. Data confidentiality and error probability for authorized and unauthorized receivers are carefully analyzed.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. E. Leaird, C.-B. Huang, Z. Jiang, S.-G. Park, and A. M. Weiner, in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper OTuP2.
  2. H. Yuen, arXiv.org e-Print archive, 30 July 2004, arXiv:quant-ph/0311061v6.
  3. C. Liang, G. S. Kanter, E. Corndorf, and P. Kumar, IEEE Photon. Technol. Lett. 17, 1573 (2005).
    [CrossRef]
  4. G. Cincotti, N. Wada, and K. Kitayama, IEEE Photon. Technol. Lett. 20, 168 (2008).
    [CrossRef]
  5. H. Yuen, P. Kumar, E. Corndorf, and R. Nair, Phys. Lett. A 346, 1 (2005).
    [CrossRef]
  6. E. Condorf, G. Barbosa, C. Liang, H. P. Yuen, and P. Kumar, Opt. Lett. 28, 2040 (2003).
    [CrossRef]
  7. G. S. Vernam, J. Am. Inst. Electr. Eng. 45, 109 (1926).

2008 (1)

G. Cincotti, N. Wada, and K. Kitayama, IEEE Photon. Technol. Lett. 20, 168 (2008).
[CrossRef]

2005 (2)

H. Yuen, P. Kumar, E. Corndorf, and R. Nair, Phys. Lett. A 346, 1 (2005).
[CrossRef]

C. Liang, G. S. Kanter, E. Corndorf, and P. Kumar, IEEE Photon. Technol. Lett. 17, 1573 (2005).
[CrossRef]

2003 (1)

1926 (1)

G. S. Vernam, J. Am. Inst. Electr. Eng. 45, 109 (1926).

Barbosa, G.

Cincotti, G.

G. Cincotti, N. Wada, and K. Kitayama, IEEE Photon. Technol. Lett. 20, 168 (2008).
[CrossRef]

Condorf, E.

Corndorf, E.

H. Yuen, P. Kumar, E. Corndorf, and R. Nair, Phys. Lett. A 346, 1 (2005).
[CrossRef]

C. Liang, G. S. Kanter, E. Corndorf, and P. Kumar, IEEE Photon. Technol. Lett. 17, 1573 (2005).
[CrossRef]

Huang, C.-B.

D. E. Leaird, C.-B. Huang, Z. Jiang, S.-G. Park, and A. M. Weiner, in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper OTuP2.

Jiang, Z.

D. E. Leaird, C.-B. Huang, Z. Jiang, S.-G. Park, and A. M. Weiner, in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper OTuP2.

Kanter, G. S.

C. Liang, G. S. Kanter, E. Corndorf, and P. Kumar, IEEE Photon. Technol. Lett. 17, 1573 (2005).
[CrossRef]

Kitayama, K.

G. Cincotti, N. Wada, and K. Kitayama, IEEE Photon. Technol. Lett. 20, 168 (2008).
[CrossRef]

Kumar, P.

H. Yuen, P. Kumar, E. Corndorf, and R. Nair, Phys. Lett. A 346, 1 (2005).
[CrossRef]

C. Liang, G. S. Kanter, E. Corndorf, and P. Kumar, IEEE Photon. Technol. Lett. 17, 1573 (2005).
[CrossRef]

E. Condorf, G. Barbosa, C. Liang, H. P. Yuen, and P. Kumar, Opt. Lett. 28, 2040 (2003).
[CrossRef]

Leaird, D. E.

D. E. Leaird, C.-B. Huang, Z. Jiang, S.-G. Park, and A. M. Weiner, in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper OTuP2.

Liang, C.

C. Liang, G. S. Kanter, E. Corndorf, and P. Kumar, IEEE Photon. Technol. Lett. 17, 1573 (2005).
[CrossRef]

E. Condorf, G. Barbosa, C. Liang, H. P. Yuen, and P. Kumar, Opt. Lett. 28, 2040 (2003).
[CrossRef]

Nair, R.

H. Yuen, P. Kumar, E. Corndorf, and R. Nair, Phys. Lett. A 346, 1 (2005).
[CrossRef]

Park, S.-G.

D. E. Leaird, C.-B. Huang, Z. Jiang, S.-G. Park, and A. M. Weiner, in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper OTuP2.

Vernam, G. S.

G. S. Vernam, J. Am. Inst. Electr. Eng. 45, 109 (1926).

Wada, N.

G. Cincotti, N. Wada, and K. Kitayama, IEEE Photon. Technol. Lett. 20, 168 (2008).
[CrossRef]

Weiner, A. M.

D. E. Leaird, C.-B. Huang, Z. Jiang, S.-G. Park, and A. M. Weiner, in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper OTuP2.

Yuen, H.

H. Yuen, P. Kumar, E. Corndorf, and R. Nair, Phys. Lett. A 346, 1 (2005).
[CrossRef]

H. Yuen, arXiv.org e-Print archive, 30 July 2004, arXiv:quant-ph/0311061v6.

Yuen, H. P.

IEEE Photon. Technol. Lett. (2)

C. Liang, G. S. Kanter, E. Corndorf, and P. Kumar, IEEE Photon. Technol. Lett. 17, 1573 (2005).
[CrossRef]

G. Cincotti, N. Wada, and K. Kitayama, IEEE Photon. Technol. Lett. 20, 168 (2008).
[CrossRef]

J. Am. Inst. Electr. Eng. (1)

G. S. Vernam, J. Am. Inst. Electr. Eng. 45, 109 (1926).

Opt. Lett. (1)

Phys. Lett. A (1)

H. Yuen, P. Kumar, E. Corndorf, and R. Nair, Phys. Lett. A 346, 1 (2005).
[CrossRef]

Other (2)

D. E. Leaird, C.-B. Huang, Z. Jiang, S.-G. Park, and A. M. Weiner, in Optical Fiber Communication Conference, OSA Technical Digest (CD) (Optical Society of America, 2008), paper OTuP2.

H. Yuen, arXiv.org e-Print archive, 30 July 2004, arXiv:quant-ph/0311061v6.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of the cipher/decipher. PPG, pulse pattern generator.

Fig. 2
Fig. 2

Bit received by Bob (bold curve) and Eve. The inset shows the pulse on a larger scale.

Fig. 3
Fig. 3

Error probability for the eavesdropper as a function of the number of the frequency subchannels N and the number of phase values M.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Ψ = α 1 α 2 α N .
Ψ 0 = α 1 α 2 α N , Ψ π = α 1 α 2 α N ,
Ψ m b = e ( i J z φ m ) Ψ b = e i ( φ m 1 + φ b ) α 1 e i ( φ m 2 + φ b ) α 2 e i ( φ m N + φ b ) α N ,
J z φ m = n = 0 N a a φ m n ,
P B = 1 2 ( 1 1 exp 2 η n ¯ ) ,
P E = 1 2 Tr [ Π 0 ρ 1 + Π 1 ρ 0 ] ,

Metrics