Abstract

A miniature Fabry–Perot (FP) interferometric fiber-optic sensor suitable for high-temperature sensing is proposed and demonstrated. The sensor head consists of two FP cavities formed by fusion splicing a short hollow-core fiber and a piece of single-mode fiber at a photonic crystal fiber in series. The reflection spectra of an implemented sensor are measured at several temperatures and analyzed in the spatial frequency domain. The experiment shows that the thermal-optic effect of the cavity material is much more appreciable than its thermal expansion. The temperature measurements up to 1000°C with a step of 50°C confirm that it could be applicable as a high-temperature sensor.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Y. Choi, K. S. Park, and B. H. Lee, Opt. Lett. 33, 812 (2008).
    [CrossRef] [PubMed]
  2. L. Yuan, J. Yang, Z. Liu, and J. Sun, Opt. Lett. 31, 2692 (2006).
    [CrossRef] [PubMed]
  3. Y. Chen and H. F. Taylor, Opt. Lett. 27, 903 (2002).
    [CrossRef]
  4. B. Yu, G. Pickrell, and A. Wang, IEEE Photon. Technol. Lett. 16, 2296 (2004).
    [CrossRef]
  5. Y.-J. Rao, Opt. Fiber Technol. 12, 227 (2006).
    [CrossRef]
  6. W.-H. Tsai and C.-J. Lin, J. Mosc. Phys. Soc. 19, 682 (2001).
  7. Z. Huang, Y. Zhu, X. Chen, and A. Wang, IEEE Photon. Technol. Lett. 17, 2403 (2005).
    [CrossRef]
  8. Y.-J. Rao, Z.-L. Ran, X. Liao, and H.-Y. Deng, Opt. Express 15, 14936 (2007).
    [CrossRef] [PubMed]
  9. Y. Zhang, X. Chen, Y. Wang, K. L. Cooper, and A. Wang, J. Lightwave Technol. 25, 1797 (2007).
    [CrossRef]
  10. H. Y. Choi, M. J. Kim, and B. H. Lee, Opt. Express 15, 5711 (2007).
    [CrossRef] [PubMed]
  11. J. Xu, X. Wang, K. L. Cooper, and A. Wang, Opt. Lett. 30, 3269 (2005).
    [CrossRef]

2008 (1)

2007 (3)

2006 (2)

2005 (2)

Z. Huang, Y. Zhu, X. Chen, and A. Wang, IEEE Photon. Technol. Lett. 17, 2403 (2005).
[CrossRef]

J. Xu, X. Wang, K. L. Cooper, and A. Wang, Opt. Lett. 30, 3269 (2005).
[CrossRef]

2004 (1)

B. Yu, G. Pickrell, and A. Wang, IEEE Photon. Technol. Lett. 16, 2296 (2004).
[CrossRef]

2002 (1)

2001 (1)

W.-H. Tsai and C.-J. Lin, J. Mosc. Phys. Soc. 19, 682 (2001).

Chen, X.

Y. Zhang, X. Chen, Y. Wang, K. L. Cooper, and A. Wang, J. Lightwave Technol. 25, 1797 (2007).
[CrossRef]

Z. Huang, Y. Zhu, X. Chen, and A. Wang, IEEE Photon. Technol. Lett. 17, 2403 (2005).
[CrossRef]

Chen, Y.

Choi, H. Y.

Cooper, K. L.

Deng, H.-Y.

Huang, Z.

Z. Huang, Y. Zhu, X. Chen, and A. Wang, IEEE Photon. Technol. Lett. 17, 2403 (2005).
[CrossRef]

Kim, M. J.

Lee, B. H.

Liao, X.

Lin, C.-J.

W.-H. Tsai and C.-J. Lin, J. Mosc. Phys. Soc. 19, 682 (2001).

Liu, Z.

Park, K. S.

Pickrell, G.

B. Yu, G. Pickrell, and A. Wang, IEEE Photon. Technol. Lett. 16, 2296 (2004).
[CrossRef]

Ran, Z.-L.

Rao, Y.-J.

Sun, J.

Taylor, H. F.

Tsai, W.-H.

W.-H. Tsai and C.-J. Lin, J. Mosc. Phys. Soc. 19, 682 (2001).

Wang, A.

Y. Zhang, X. Chen, Y. Wang, K. L. Cooper, and A. Wang, J. Lightwave Technol. 25, 1797 (2007).
[CrossRef]

Z. Huang, Y. Zhu, X. Chen, and A. Wang, IEEE Photon. Technol. Lett. 17, 2403 (2005).
[CrossRef]

J. Xu, X. Wang, K. L. Cooper, and A. Wang, Opt. Lett. 30, 3269 (2005).
[CrossRef]

B. Yu, G. Pickrell, and A. Wang, IEEE Photon. Technol. Lett. 16, 2296 (2004).
[CrossRef]

Wang, X.

Wang, Y.

Xu, J.

Yang, J.

Yu, B.

B. Yu, G. Pickrell, and A. Wang, IEEE Photon. Technol. Lett. 16, 2296 (2004).
[CrossRef]

Yuan, L.

Zhang, Y.

Zhu, Y.

Z. Huang, Y. Zhu, X. Chen, and A. Wang, IEEE Photon. Technol. Lett. 17, 2403 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic of the sensor system (top) and the detail structure of the proposed sensor head (bottom). The inset in the middle is the microscope photograph of a fabricated sensor head.

Fig. 2
Fig. 2

(a) Reflection spectrum of the proposed sensor and (b) its spatial frequency spectrum obtained by taking the FFT. The inset of the wavelength spectrum is the close-up of the middle part marked with a dotted square box.

Fig. 3
Fig. 3

(a) Spatial frequency spectra obtained from the reflection spectra measured at several temperatures, and the detail of the frequency shift magnified at peaks (b) 1, (c) 2, (d) 3, (e) 4, and (f) 5, respectively.

Fig. 4
Fig. 4

Temperature-induced shifts of all appreciable spatial frequency peaks in Fig. 3. The shifts happened in three distinct groups.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

l OPL = 2 n l ,
Δ l OPL = 2 ( d n d T l + n d l d T ) Δ T l OPL ( σ T + α T ) Δ T ,
Δ l OPL 1 l OPL 1 α T 1 Δ T , Δ l OPL 2 = l OPL 2 ( σ T 2 + α T 2 ) Δ T ,
ξ = 1 λ 1 λ 2 l OPL ,

Metrics