Abstract

Endless single-mode fibers, which remain single mode over their entire range of guidance, are, to the best of our knowledge, the first reported unique application of photonic crystal fibers. These endless single-mode fibers are made by omitting a single air hole in a periodic array of small air holes in a background silica glass. The feasibility of all-glass endless single-mode photonic crystal fibers where the air holes are replaced by a glass with vanishingly small refractive index contrast relative to silica is first studied theoretically and then demonstrated experimentally. This new all-glass design enables not only ease and consistency of fabrication but also the convenience to be handled and spliced like conventional fibers.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin, Opt. Lett. 21, 1547 (1996).
    [CrossRef] [PubMed]
  2. P. St. J. Russell, J. Lightwave Technol. 24, 4729 (2006).
    [CrossRef]
  3. J. Limpert, A. Liem, M. Reich, T. Schreiber, S. Nolte, H. Zellmer, A. Tünnermann, J. Broeng, A. Petersson, and C. Jakonsen, Opt. Express 12, 1313 (2004).
    [CrossRef] [PubMed]
  4. J. Limpert, O. Schmidt, J. Rothhardt, F. Röser, T. Schreiber, and A. Tünnermann, Opt. Express 14, 2715 (2006).
    [CrossRef] [PubMed]
  5. J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J. P. de Sandro, Electron. Lett. 34, 1347 (1998).
    [CrossRef]
  6. T. A. Birks, J. C. Knight, and P. St. J. Russell, Opt. Lett. 22, 961 (1997).
    [CrossRef] [PubMed]
  7. T. P. White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. Martijn de Sterke, and L. C. Botten, J. Opt. Soc. Am. B 19, 2322 (2002).
    [CrossRef]
  8. B. T. Kuhlmey, R. C. McPhedran, and C. Martin de Sterke, Opt. Lett. 27, 1684 (2002).
    [CrossRef]
  9. B. T. Kuhlmey, R. C. McPhedran, C. Martin de Sterke, P. A. Robinson, G. Renversez, and D. Maystre, Opt. Lett. 27, 1684 (2002).
    [CrossRef]
  10. M. D. Nielsen and N. A. Mortensen, Opt. Express 11, 2762 (2003).
    [CrossRef] [PubMed]

2006 (2)

2004 (1)

2003 (1)

2002 (3)

1998 (1)

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J. P. de Sandro, Electron. Lett. 34, 1347 (1998).
[CrossRef]

1997 (1)

1996 (1)

Atkin, D. M.

Birks, T. A.

Botten, L. C.

Broeng, J.

Cregan, R. F.

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J. P. de Sandro, Electron. Lett. 34, 1347 (1998).
[CrossRef]

de Sandro, J. P.

J. C. Knight, T. A. Birks, R. F. Cregan, P. St. J. Russell, and J. P. de Sandro, Electron. Lett. 34, 1347 (1998).
[CrossRef]

Jakonsen, C.

Knight, J. C.

Kuhlmey, B. T.

Liem, A.

Limpert, J.

Martijn de Sterke, C.

Martin, C. de Sterke

Maystre, D.

McPhedran, R. C.

Mortensen, N. A.

Nielsen, M. D.

Nolte, S.

Petersson, A.

Reich, M.

Renversez, G.

Robinson, P. A.

Röser, F.

Rothhardt, J.

Russell, P. St. J.

Schmidt, O.

Schreiber, T.

Tünnermann, A.

White, T. P.

Zellmer, H.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Simulated confinement losses for N = 2 and 3 along with the respective second-order derivatives of the second-order mode confinement loss.

Fig. 2
Fig. 2

Single-mode and multimode boundaries of PCFs.

Fig. 3
Fig. 3

Fabricated PCF cross section ( 2 ρ = 47 μ m , d Λ = 0.36 , Λ = 28.7 μ m , d = 10.3 μ m ), measured 2D refractive index, measured modes at various wavelengths, and simulated mode at 1 μ m .

Metrics