Abstract

We propose and investigate an accurate method for the experimental measurement of the stimulated Brillouin scattering gain coefficient in optical fiber. The gain is extracted from measuring the transmitted pump power at the threshold of stimulated Brillouin scattering (SBS) laser oscillation in a Fabry–Perot cavity formed by Fresnel reflection at the fiber ends. The method is free from a range of uncertainties and difficulties of commonly used approaches and is easy to implement. Experimental evidence of the variation of the SBS gain coefficient with numerical aperture of the fiber, first predicted in [Phys. Rev. Lett. 85, 1879 (2000) ], is proven.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Pohl, M. Maier, and W. Kaiser, Phys. Rev. Lett. 20, 366 (1968).
    [CrossRef]
  2. D. Pohl and W. Kaiser, Phys. Rev. B 1, 31 (1970).
    [CrossRef]
  3. A. I. Erokhin, V. I. Kovalev, and F. S. Faizullov, Sov. J. Quantum Electron. 16, 872 (1986).
    [CrossRef]
  4. V. I. Kovalev, V. I. Popovichev, V. V. Ragul'skii, and F. S. Faizullov, Sov. J. Quantum Electron. 2, 69 (1972).
    [CrossRef]
  5. J. Bai, J. Shi, M. Ouyang, X. Chen, W. Gong, H. Jing, J. Liu, and D. Liu, Opt. Lett. 33, 1539 (2008).
    [CrossRef] [PubMed]
  6. B. Ya. Zeldovich, N. F. Pilipetskii, and V. V. Shkunov, Principles of Phase Conjugation (Springer-Verlag, 1985).
  7. R. W. Boyd, K. Rzazewski, and P. Narum, Phys. Rev. A 42, 5514 (1990).
    [CrossRef] [PubMed]
  8. R. G. Smith, Appl. Opt. 11, 2489 (1972).
    [CrossRef] [PubMed]
  9. G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, 1995).
  10. V. I. Kovalev and R. G. Harrison, Opt. Express 15, 17625 (2007).
    [CrossRef] [PubMed]
  11. V. I. Kovalev and R. G. Harrison, Opt. Express 16, 12272 (2008).
    [CrossRef] [PubMed]
  12. V. I. Kovalev and R. G. Harrison, Opt. Commun. 204, 349 (2002).
    [CrossRef]
  13. V. I. Kovalev and R. G. Harrison, Phys. Rev. Lett. 85, 1879 (2000).
    [CrossRef] [PubMed]
  14. V. I. Kovalev and R. G. Harrison, Opt. Lett. 27, 2022 (2002).
    [CrossRef]
  15. R. H. Stolen, IEEE J. Quantum Electron. QE-15, 1157 (1979).
    [CrossRef]

2008

2007

2002

V. I. Kovalev and R. G. Harrison, Opt. Lett. 27, 2022 (2002).
[CrossRef]

V. I. Kovalev and R. G. Harrison, Opt. Commun. 204, 349 (2002).
[CrossRef]

2000

V. I. Kovalev and R. G. Harrison, Phys. Rev. Lett. 85, 1879 (2000).
[CrossRef] [PubMed]

1990

R. W. Boyd, K. Rzazewski, and P. Narum, Phys. Rev. A 42, 5514 (1990).
[CrossRef] [PubMed]

1986

A. I. Erokhin, V. I. Kovalev, and F. S. Faizullov, Sov. J. Quantum Electron. 16, 872 (1986).
[CrossRef]

1979

R. H. Stolen, IEEE J. Quantum Electron. QE-15, 1157 (1979).
[CrossRef]

1972

V. I. Kovalev, V. I. Popovichev, V. V. Ragul'skii, and F. S. Faizullov, Sov. J. Quantum Electron. 2, 69 (1972).
[CrossRef]

R. G. Smith, Appl. Opt. 11, 2489 (1972).
[CrossRef] [PubMed]

1970

D. Pohl and W. Kaiser, Phys. Rev. B 1, 31 (1970).
[CrossRef]

1968

D. Pohl, M. Maier, and W. Kaiser, Phys. Rev. Lett. 20, 366 (1968).
[CrossRef]

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, 1995).

Bai, J.

Boyd, R. W.

R. W. Boyd, K. Rzazewski, and P. Narum, Phys. Rev. A 42, 5514 (1990).
[CrossRef] [PubMed]

Chen, X.

Erokhin, A. I.

A. I. Erokhin, V. I. Kovalev, and F. S. Faizullov, Sov. J. Quantum Electron. 16, 872 (1986).
[CrossRef]

Faizullov, F. S.

A. I. Erokhin, V. I. Kovalev, and F. S. Faizullov, Sov. J. Quantum Electron. 16, 872 (1986).
[CrossRef]

V. I. Kovalev, V. I. Popovichev, V. V. Ragul'skii, and F. S. Faizullov, Sov. J. Quantum Electron. 2, 69 (1972).
[CrossRef]

Gong, W.

Harrison, R. G.

Jing, H.

Kaiser, W.

D. Pohl and W. Kaiser, Phys. Rev. B 1, 31 (1970).
[CrossRef]

D. Pohl, M. Maier, and W. Kaiser, Phys. Rev. Lett. 20, 366 (1968).
[CrossRef]

Kovalev, V. I.

V. I. Kovalev and R. G. Harrison, Opt. Express 16, 12272 (2008).
[CrossRef] [PubMed]

V. I. Kovalev and R. G. Harrison, Opt. Express 15, 17625 (2007).
[CrossRef] [PubMed]

V. I. Kovalev and R. G. Harrison, Opt. Commun. 204, 349 (2002).
[CrossRef]

V. I. Kovalev and R. G. Harrison, Opt. Lett. 27, 2022 (2002).
[CrossRef]

V. I. Kovalev and R. G. Harrison, Phys. Rev. Lett. 85, 1879 (2000).
[CrossRef] [PubMed]

A. I. Erokhin, V. I. Kovalev, and F. S. Faizullov, Sov. J. Quantum Electron. 16, 872 (1986).
[CrossRef]

V. I. Kovalev, V. I. Popovichev, V. V. Ragul'skii, and F. S. Faizullov, Sov. J. Quantum Electron. 2, 69 (1972).
[CrossRef]

Liu, D.

Liu, J.

Maier, M.

D. Pohl, M. Maier, and W. Kaiser, Phys. Rev. Lett. 20, 366 (1968).
[CrossRef]

Narum, P.

R. W. Boyd, K. Rzazewski, and P. Narum, Phys. Rev. A 42, 5514 (1990).
[CrossRef] [PubMed]

Ouyang, M.

Pilipetskii, N. F.

B. Ya. Zeldovich, N. F. Pilipetskii, and V. V. Shkunov, Principles of Phase Conjugation (Springer-Verlag, 1985).

Pohl, D.

D. Pohl and W. Kaiser, Phys. Rev. B 1, 31 (1970).
[CrossRef]

D. Pohl, M. Maier, and W. Kaiser, Phys. Rev. Lett. 20, 366 (1968).
[CrossRef]

Popovichev, V. I.

V. I. Kovalev, V. I. Popovichev, V. V. Ragul'skii, and F. S. Faizullov, Sov. J. Quantum Electron. 2, 69 (1972).
[CrossRef]

Ragul'skii, V. V.

V. I. Kovalev, V. I. Popovichev, V. V. Ragul'skii, and F. S. Faizullov, Sov. J. Quantum Electron. 2, 69 (1972).
[CrossRef]

Rzazewski, K.

R. W. Boyd, K. Rzazewski, and P. Narum, Phys. Rev. A 42, 5514 (1990).
[CrossRef] [PubMed]

Shi, J.

Shkunov, V. V.

B. Ya. Zeldovich, N. F. Pilipetskii, and V. V. Shkunov, Principles of Phase Conjugation (Springer-Verlag, 1985).

Smith, R. G.

Stolen, R. H.

R. H. Stolen, IEEE J. Quantum Electron. QE-15, 1157 (1979).
[CrossRef]

Zeldovich, B. Ya.

B. Ya. Zeldovich, N. F. Pilipetskii, and V. V. Shkunov, Principles of Phase Conjugation (Springer-Verlag, 1985).

Appl. Opt.

IEEE J. Quantum Electron.

R. H. Stolen, IEEE J. Quantum Electron. QE-15, 1157 (1979).
[CrossRef]

Opt. Commun.

V. I. Kovalev and R. G. Harrison, Opt. Commun. 204, 349 (2002).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. A

R. W. Boyd, K. Rzazewski, and P. Narum, Phys. Rev. A 42, 5514 (1990).
[CrossRef] [PubMed]

Phys. Rev. B

D. Pohl and W. Kaiser, Phys. Rev. B 1, 31 (1970).
[CrossRef]

Phys. Rev. Lett.

D. Pohl, M. Maier, and W. Kaiser, Phys. Rev. Lett. 20, 366 (1968).
[CrossRef]

V. I. Kovalev and R. G. Harrison, Phys. Rev. Lett. 85, 1879 (2000).
[CrossRef] [PubMed]

Sov. J. Quantum Electron.

A. I. Erokhin, V. I. Kovalev, and F. S. Faizullov, Sov. J. Quantum Electron. 16, 872 (1986).
[CrossRef]

V. I. Kovalev, V. I. Popovichev, V. V. Ragul'skii, and F. S. Faizullov, Sov. J. Quantum Electron. 2, 69 (1972).
[CrossRef]

Other

B. Ya. Zeldovich, N. F. Pilipetskii, and V. V. Shkunov, Principles of Phase Conjugation (Springer-Verlag, 1985).

G. P. Agrawal, Nonlinear Fiber Optics, 2nd ed. (Academic, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Oscilloscope trace of the output Stokes signal, P S , from the fiber sample of length 98 m at pump power 10 % above the threshold power. Period of modulation is t r .

Fig. 2
Fig. 2

Dependence of the SBS gain coefficient on NA calculated from Eq. (2) (solid curve), experimentally measured (dots), and calculated data accounting for depolarization (dashed curve).

Tables (1)

Tables Icon

Table 1 Characteristics of Fiber Samples Investigated

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

g = [ 2 α L ln ( R 1 R 2 ) ] I th ( osc ) L ef ,
g T ( ω ) = g 0 Γ 0 π Ω B ( 1 1 ( NA ) 2 n 2 ) [ tan 1 ( π ( Ω B ω ) Γ 0 ) tan 1 ( π ( Ω B ( 1 1 ( NA ) 2 n 2 ) ω ) Γ 0 ) ] ,

Metrics