Abstract

We have compared radiative transfer theory with analytical solutions of the Maxwell equations for light scattering by multiple infinitely long parallel cylinders at perpendicular incidence. The calculated scattering cross sections for both methods show large differences, but the angle-dependent differential scattering cross-section results are very similar for small cylinder densities, except close to the forward direction. In contrast to recently published results, it is shown that the radiative transfer equation is a useful approximation for small cylinder concentrations.

© 2008 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Light scattering by multiple spheres: comparison between Maxwell theory and radiative-transfer-theory calculations

Florian Voit, Jan Schäfer, and Alwin Kienle
Opt. Lett. 34(17) 2593-2595 (2009)

Nature of light scattering in dental enamel and dentin at visible and near-infrared wavelengths

Daniel Fried, Richard E. Glena, John D. B. Featherstone, and Wolf Seka
Appl. Opt. 34(7) 1278-1285 (1995)

Theoretical model for the scattering of light by dentin and comparison with measurements

Jaap R. Zijp and Jaap J. ten Bosch
Appl. Opt. 32(4) 411-415 (1993)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (7)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription