Abstract

We propose and experimentally demonstrate a new (to our knowledge) digital holographic method to reconstruct section images of objects with wavelength-dependent reflectivity. A number of holograms of an object are taken as the illumination angle of the laser beam with a specific wavelength is changed in regular intervals. The complex object fields reconstructed from the holograms are numerically superposed to show the image of a sliced section of the object, whose position and thickness can be chosen arbitrarily. By changing the wavelength of the illumination beam, wavelength-dependent section images can be obtained with our method.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Schnars and W. Jüptner, Appl. Opt. 33, 179 (1994).
    [CrossRef] [PubMed]
  2. P. Massatsch, F. Charrière, E. Cuche, P. Marquet, and C. D. Depeursinge, Appl. Opt. 44, 1806 (2005).
    [CrossRef] [PubMed]
  3. M. K. Kim, Opt. Lett. 24, 1693 (1999).
    [CrossRef]
  4. Pramod K. Rastogi, Digital Speckle Pattern Interferometry and Related Techniques (Wiley, 2001).
  5. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).
  6. H. Y. Yun, S. J. Jeong, J. W. Kang, and C. K. Hong, Key Eng. Mater. 270-273, 756 (2004).
    [CrossRef]
  7. H. Y. Yun and C. K. Hong, Appl. Opt. 44, 4960 (2005).
    [CrossRef]
  8. P. Ferraro, S. D. Nicola, G. Coppola, A. Finizio, D. Alfieri, and G. Pierattini, Opt. Lett. 29, 854 (2004).
    [CrossRef] [PubMed]

2005

2004

1999

1994

Alfieri, D.

Charrière, F.

Coppola, G.

Cuche, E.

Depeursinge, C. D.

Ferraro, P.

Finizio, A.

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).

Hong, C. K.

H. Y. Yun and C. K. Hong, Appl. Opt. 44, 4960 (2005).
[CrossRef]

H. Y. Yun, S. J. Jeong, J. W. Kang, and C. K. Hong, Key Eng. Mater. 270-273, 756 (2004).
[CrossRef]

Jeong, S. J.

H. Y. Yun, S. J. Jeong, J. W. Kang, and C. K. Hong, Key Eng. Mater. 270-273, 756 (2004).
[CrossRef]

Jüptner, W.

Kang, J. W.

H. Y. Yun, S. J. Jeong, J. W. Kang, and C. K. Hong, Key Eng. Mater. 270-273, 756 (2004).
[CrossRef]

Kim, M. K.

Marquet, P.

Massatsch, P.

Nicola, S. D.

Pierattini, G.

Rastogi, Pramod K.

Pramod K. Rastogi, Digital Speckle Pattern Interferometry and Related Techniques (Wiley, 2001).

Schnars, U.

Yun, H. Y.

H. Y. Yun and C. K. Hong, Appl. Opt. 44, 4960 (2005).
[CrossRef]

H. Y. Yun, S. J. Jeong, J. W. Kang, and C. K. Hong, Key Eng. Mater. 270-273, 756 (2004).
[CrossRef]

Appl. Opt.

Key Eng. Mater.

H. Y. Yun, S. J. Jeong, J. W. Kang, and C. K. Hong, Key Eng. Mater. 270-273, 756 (2004).
[CrossRef]

Opt. Lett.

Other

Pramod K. Rastogi, Digital Speckle Pattern Interferometry and Related Techniques (Wiley, 2001).

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Geometrical configuration of the object and the collimated illumination beam. (b) Schematic of the experimental setup.

Fig. 2
Fig. 2

Holograms and reconstructed images of a 1951-USAF resolution target: (a)–(c) Holograms taken at θ = 0.76 ° , 13.5°, and 7 ° ( = θ c ) , respectively; (d)–(f) section images composed from 13, 25, and 50 object fields, respectively; (g)–(i) section images, obtained from 50 object fields each, for different axial positions; (j)–(l) tomographic images, at the dashed line in (c), obtained with Δ θ = 0.78 ° , 0.52°, and 0.26°, respectively.

Fig. 3
Fig. 3

(a) Partially coated glass plate; (b) and (c) section images of the top and the bottom surfaces at 532 nm ; (d) and (e) similar section images at 632.8 nm ; (f) difference between (c) and (e); (g) and (h) tomographic images with 532 and 632.8 nm , respectively.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

s k ( r ) = a ( r ) exp [ i ( k r k z z 0 ) ] ,
S k ( f x , f y , z ) = A ( f x k x 2 π , f y k y 2 π , z ) exp [ i k z ( z z 0 ) ] ,
U k ( f x , f y , z ) = S k ( f x , f y , z ) exp [ 2 π i f z ( z z ) ] d z = A ( f x k x 2 π , f y k y 2 π , z ) exp [ i k z ( z z 0 ) ] exp [ 2 π i f z ( z z ) ] d z ,
U k ( f x , f y , z 0 ) = U k ( f x + k x 2 π , f y + k y 2 π , z 0 ) = A ( f x , f y , z ) exp [ i ( k z 2 π f z ) ( z z 0 ) ] d z .
U total ( f x , f y , z 0 ) k z A ( f x , f y , z ) exp [ 2 i k z ( z z 0 ) ] d z A ( f x , f y , z ) δ ( z z 0 ) d z A ( f x , f y , z 0 ) ,

Metrics