Abstract

We observe spectral hole burning in a room-temperature optical fiber pumped by a spectrally broadened pump beam. This beam drives the stimulated Brillouin process, creating an inhomogeneously broadened resonance in the material whose shape can be engineered by tailoring the beam’s spectrum. A monochromatic saturating beam “burns” a narrow spectral hole that is 104 times narrower than the inhomogeneous width of the resonance. This research paves the way toward agile optical information processing and storage using standard telecommunication components.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W.E.Moerner, ed., Persistent Spectral Holeburning: Science and Applications, Vol. 44 of Topics in Current Physics (Springer-Verlag, 1988).
  2. T. W. Mossberg, Opt. Lett. 7, 77 (1982).
    [CrossRef] [PubMed]
  3. W. R. Babbitt and T. W. Mossberg, Opt. Commun. 65, 185 (1988).
    [CrossRef]
  4. T. W. Mossberg, Opt. Lett. 17, 535 (1992).
    [CrossRef] [PubMed]
  5. H. Lin, T. Wang, and T. W. Mossberg, Opt. Lett. 20, 1658 (1995).
    [CrossRef] [PubMed]
  6. G. Hétet, J. J. Longdell, A. L. Alexander, P. K. Lam, and M. J. Sellars, Phys. Rev. Lett. 100, 023601 (2008).
    [CrossRef] [PubMed]
  7. Z. W. Barber, M. Tian, R. R. Reibel, and W. R. Babbitt, Opt. Express 10, 1145 (2002).
    [PubMed]
  8. K. Merkel, R. K. Mohan, Z. Cole, T. Chang, A. Olson, and W. Babbitt, J. Lumin. 107, 62 (2004).
    [CrossRef]
  9. R. W. Boyd, Nonlinear Optics, 2nd ed., (Cambridge U. Press, 2003), Chap. 9.
  10. Y. Takushima and K. Kikuchi, Opt. Lett. 20, 34 (1995).
    [CrossRef] [PubMed]
  11. L. Stépien, S. Randoux, and J. Zemmouri, Phys. Rev. A 65, 53812 (2002).
    [CrossRef]
  12. A. A. Fotiadi, R. Kiyan, O. Deparis, P. Mégret, and M. Blondel, Opt. Lett. 27, 83 (2002).
    [CrossRef]
  13. N. A. Olsson and J. P. van der Ziel, J. Lightwave Technol. LT-5, 147 (1987).
    [CrossRef]
  14. Z. Zhu, A. M. C. Dawes, D. J. Gauthier, L. Zhang, and A. E. Willner, J. Lightwave Technol. 25, 201 (2007).
    [CrossRef]
  15. D. Cotter, Electron. Lett. 18, 495 (1982).
    [CrossRef]
  16. L. W. Hillman, R. W. Boyd, J. Krasinski, and C. R. Stroud, Jr., Opt. Commun. 45, 416 (1983).
    [CrossRef]
  17. K. Y. Song and K. Hotate, Opt. Lett. 32, 217 (2007).
    [CrossRef] [PubMed]

2008 (1)

G. Hétet, J. J. Longdell, A. L. Alexander, P. K. Lam, and M. J. Sellars, Phys. Rev. Lett. 100, 023601 (2008).
[CrossRef] [PubMed]

2007 (2)

2004 (1)

K. Merkel, R. K. Mohan, Z. Cole, T. Chang, A. Olson, and W. Babbitt, J. Lumin. 107, 62 (2004).
[CrossRef]

2002 (3)

1995 (2)

1992 (1)

1988 (1)

W. R. Babbitt and T. W. Mossberg, Opt. Commun. 65, 185 (1988).
[CrossRef]

1987 (1)

N. A. Olsson and J. P. van der Ziel, J. Lightwave Technol. LT-5, 147 (1987).
[CrossRef]

1983 (1)

L. W. Hillman, R. W. Boyd, J. Krasinski, and C. R. Stroud, Jr., Opt. Commun. 45, 416 (1983).
[CrossRef]

1982 (2)

Alexander, A. L.

G. Hétet, J. J. Longdell, A. L. Alexander, P. K. Lam, and M. J. Sellars, Phys. Rev. Lett. 100, 023601 (2008).
[CrossRef] [PubMed]

Babbitt, W.

K. Merkel, R. K. Mohan, Z. Cole, T. Chang, A. Olson, and W. Babbitt, J. Lumin. 107, 62 (2004).
[CrossRef]

Babbitt, W. R.

Barber, Z. W.

Blondel, M.

Boyd, R. W.

L. W. Hillman, R. W. Boyd, J. Krasinski, and C. R. Stroud, Jr., Opt. Commun. 45, 416 (1983).
[CrossRef]

R. W. Boyd, Nonlinear Optics, 2nd ed., (Cambridge U. Press, 2003), Chap. 9.

Chang, T.

K. Merkel, R. K. Mohan, Z. Cole, T. Chang, A. Olson, and W. Babbitt, J. Lumin. 107, 62 (2004).
[CrossRef]

Cole, Z.

K. Merkel, R. K. Mohan, Z. Cole, T. Chang, A. Olson, and W. Babbitt, J. Lumin. 107, 62 (2004).
[CrossRef]

Cotter, D.

D. Cotter, Electron. Lett. 18, 495 (1982).
[CrossRef]

Dawes, A. M. C.

Deparis, O.

Fotiadi, A. A.

Gauthier, D. J.

Hétet, G.

G. Hétet, J. J. Longdell, A. L. Alexander, P. K. Lam, and M. J. Sellars, Phys. Rev. Lett. 100, 023601 (2008).
[CrossRef] [PubMed]

Hillman, L. W.

L. W. Hillman, R. W. Boyd, J. Krasinski, and C. R. Stroud, Jr., Opt. Commun. 45, 416 (1983).
[CrossRef]

Hotate, K.

Kikuchi, K.

Kiyan, R.

Krasinski, J.

L. W. Hillman, R. W. Boyd, J. Krasinski, and C. R. Stroud, Jr., Opt. Commun. 45, 416 (1983).
[CrossRef]

Lam, P. K.

G. Hétet, J. J. Longdell, A. L. Alexander, P. K. Lam, and M. J. Sellars, Phys. Rev. Lett. 100, 023601 (2008).
[CrossRef] [PubMed]

Lin, H.

Longdell, J. J.

G. Hétet, J. J. Longdell, A. L. Alexander, P. K. Lam, and M. J. Sellars, Phys. Rev. Lett. 100, 023601 (2008).
[CrossRef] [PubMed]

Mégret, P.

Merkel, K.

K. Merkel, R. K. Mohan, Z. Cole, T. Chang, A. Olson, and W. Babbitt, J. Lumin. 107, 62 (2004).
[CrossRef]

Mohan, R. K.

K. Merkel, R. K. Mohan, Z. Cole, T. Chang, A. Olson, and W. Babbitt, J. Lumin. 107, 62 (2004).
[CrossRef]

Mossberg, T. W.

Olson, A.

K. Merkel, R. K. Mohan, Z. Cole, T. Chang, A. Olson, and W. Babbitt, J. Lumin. 107, 62 (2004).
[CrossRef]

Olsson, N. A.

N. A. Olsson and J. P. van der Ziel, J. Lightwave Technol. LT-5, 147 (1987).
[CrossRef]

Randoux, S.

L. Stépien, S. Randoux, and J. Zemmouri, Phys. Rev. A 65, 53812 (2002).
[CrossRef]

Reibel, R. R.

Sellars, M. J.

G. Hétet, J. J. Longdell, A. L. Alexander, P. K. Lam, and M. J. Sellars, Phys. Rev. Lett. 100, 023601 (2008).
[CrossRef] [PubMed]

Song, K. Y.

Stépien, L.

L. Stépien, S. Randoux, and J. Zemmouri, Phys. Rev. A 65, 53812 (2002).
[CrossRef]

Stroud, C. R.

L. W. Hillman, R. W. Boyd, J. Krasinski, and C. R. Stroud, Jr., Opt. Commun. 45, 416 (1983).
[CrossRef]

Takushima, Y.

Tian, M.

van der Ziel, J. P.

N. A. Olsson and J. P. van der Ziel, J. Lightwave Technol. LT-5, 147 (1987).
[CrossRef]

Wang, T.

Willner, A. E.

Zemmouri, J.

L. Stépien, S. Randoux, and J. Zemmouri, Phys. Rev. A 65, 53812 (2002).
[CrossRef]

Zhang, L.

Zhu, Z.

Electron. Lett. (1)

D. Cotter, Electron. Lett. 18, 495 (1982).
[CrossRef]

J. Lightwave Technol. (2)

J. Lumin. (1)

K. Merkel, R. K. Mohan, Z. Cole, T. Chang, A. Olson, and W. Babbitt, J. Lumin. 107, 62 (2004).
[CrossRef]

Opt. Commun. (2)

W. R. Babbitt and T. W. Mossberg, Opt. Commun. 65, 185 (1988).
[CrossRef]

L. W. Hillman, R. W. Boyd, J. Krasinski, and C. R. Stroud, Jr., Opt. Commun. 45, 416 (1983).
[CrossRef]

Opt. Express (1)

Opt. Lett. (6)

Phys. Rev. A (1)

L. Stépien, S. Randoux, and J. Zemmouri, Phys. Rev. A 65, 53812 (2002).
[CrossRef]

Phys. Rev. Lett. (1)

G. Hétet, J. J. Longdell, A. L. Alexander, P. K. Lam, and M. J. Sellars, Phys. Rev. Lett. 100, 023601 (2008).
[CrossRef] [PubMed]

Other (2)

R. W. Boyd, Nonlinear Optics, 2nd ed., (Cambridge U. Press, 2003), Chap. 9.

W.E.Moerner, ed., Persistent Spectral Holeburning: Science and Applications, Vol. 44 of Topics in Current Physics (Springer-Verlag, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Frequency-domain observations. (a) Schematic of the interaction with the power spectral density (PSD) of the pump and probe beams. (b) Hole burning for P d = 17 mW , P s = 100 μ W , and ν s ( ν d Ω B ) = 107 MHz (1), 13 MHz (2), and 175 MHz (3). (c) Single-sided hole burning spectra for P d = 17 mW , ν s ( ν d Ω B ) = 0 , and P s = 34 μ W (1), 170 μ W (2), and 510 μ W (3).

Fig. 2
Fig. 2

Time-domain observations. (a) Transmitted probe power for P d = 28 mW , ν p = ν d Ω B , P s , low = 45 μ W , and P s , high = 1.0 mW (solid curve), 2.9 mW (dotted curve), 3.9 mW (dashed curve), and 5.9 mW (double-dotted–dashed curve). (b) Exponential time constants as a function of P s , high .

Metrics