Abstract

An interferometer based on using low-coherent light source, a square prism, and the angular-scanning technique is proposed for absolute angular-displacement determinations. An angular displacement of the square prism shifts the correlogram, which is modulated by an envelope function, of the interference signal of the beams passing through the prism. This angle can thus be discovered by detecting the shifting of the envelope peak. A setup constructed to validate the interferometer is used. The results of using this setup are then presented.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. J. Schuda, Rev. Sci. Instrum. 54, 1648 (1983).
    [CrossRef]
  2. P. S. Huang, S. Kiyono, and O. Kamada, Appl. Opt. 31, 6047 (1992).
    [CrossRef] [PubMed]
  3. P. S. Huang and J. Ni, Appl. Opt. 35, 2239 (1996).
    [CrossRef] [PubMed]
  4. M. H. Chiu, S. F. Wang, and R. S. Chang, Appl. Opt. 43, 5438 (2004).
    [CrossRef] [PubMed]
  5. G. Margheri, A. Mannoni, and F. Quercioli, Appl. Opt. 36, 4521 (1997).
    [CrossRef] [PubMed]
  6. F. Chen, Z. Cao, Q. Shen, and Y. Feng, Appl. Opt. 44, 5393 (2005).
    [CrossRef] [PubMed]
  7. D. Malacara and O. Harris, Appl. Opt. 9, 1630 (1970).
    [CrossRef] [PubMed]
  8. G. D. Chapman, Appl. Opt. 13, 1646 (1974).
    [CrossRef] [PubMed]
  9. P. Shi and E. Stijns, Appl. Opt. 27, 4342 (1988).
    [CrossRef] [PubMed]
  10. M. Ikram and G. Hussain, Appl. Opt. 38, 113 (1999).
    [CrossRef]
  11. HP5529A Laser Measurement System: User's Guide (Hewlett-Packard, 1995).
  12. S. T. Lin, K. T. Lin, and W. J. Syu, Opt. Commun. 277, 251 (2007).
    [CrossRef]
  13. C. H. Liu, W. Y. Jywe, and S. C. Tzeng, Appl. Opt. 43, 2841 (2004).
  14. C. M. Wu and Y. T. Chuang, Sens. Actuators A 116, 145 (2004).
    [CrossRef]
  15. M. Hart, D. G. Vass, and M. L. Begbie, Appl. Opt. 37, 1764 (1998).
    [CrossRef]

2007 (1)

S. T. Lin, K. T. Lin, and W. J. Syu, Opt. Commun. 277, 251 (2007).
[CrossRef]

2005 (1)

2004 (3)

M. H. Chiu, S. F. Wang, and R. S. Chang, Appl. Opt. 43, 5438 (2004).
[CrossRef] [PubMed]

C. H. Liu, W. Y. Jywe, and S. C. Tzeng, Appl. Opt. 43, 2841 (2004).

C. M. Wu and Y. T. Chuang, Sens. Actuators A 116, 145 (2004).
[CrossRef]

1999 (1)

1998 (1)

1997 (1)

1996 (1)

1992 (1)

1988 (1)

1983 (1)

F. J. Schuda, Rev. Sci. Instrum. 54, 1648 (1983).
[CrossRef]

1974 (1)

1970 (1)

Begbie, M. L.

Cao, Z.

Chang, R. S.

Chapman, G. D.

Chen, F.

Chiu, M. H.

Chuang, Y. T.

C. M. Wu and Y. T. Chuang, Sens. Actuators A 116, 145 (2004).
[CrossRef]

Feng, Y.

Harris, O.

Hart, M.

Huang, P. S.

Hussain, G.

Ikram, M.

Jywe, W. Y.

C. H. Liu, W. Y. Jywe, and S. C. Tzeng, Appl. Opt. 43, 2841 (2004).

Kamada, O.

Kiyono, S.

Lin, K. T.

S. T. Lin, K. T. Lin, and W. J. Syu, Opt. Commun. 277, 251 (2007).
[CrossRef]

Lin, S. T.

S. T. Lin, K. T. Lin, and W. J. Syu, Opt. Commun. 277, 251 (2007).
[CrossRef]

Liu, C. H.

C. H. Liu, W. Y. Jywe, and S. C. Tzeng, Appl. Opt. 43, 2841 (2004).

Malacara, D.

Mannoni, A.

Margheri, G.

Ni, J.

Quercioli, F.

Schuda, F. J.

F. J. Schuda, Rev. Sci. Instrum. 54, 1648 (1983).
[CrossRef]

Shen, Q.

Shi, P.

Stijns, E.

Syu, W. J.

S. T. Lin, K. T. Lin, and W. J. Syu, Opt. Commun. 277, 251 (2007).
[CrossRef]

Tzeng, S. C.

C. H. Liu, W. Y. Jywe, and S. C. Tzeng, Appl. Opt. 43, 2841 (2004).

Vass, D. G.

Wang, S. F.

Wu, C. M.

C. M. Wu and Y. T. Chuang, Sens. Actuators A 116, 145 (2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Proposed interferometer, where β 1 = π 4 + Δ β and β 2 = π 4 + Δ β . (b) The square prism and a beam incident onto the prism at angle β.

Fig. 2
Fig. 2

Experimental setup.

Fig. 3
Fig. 3

Correlogram.

Fig. 4
Fig. 4

Result of the validity test of the proposed interferometer.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

Λ i = t [ ( n 2 sin 2 β ) 1 2 cos β ] ,
Λ d = 4 h Δ β ,
h = t 2 [ 2 1 n 2 1 2 ] ,
I = I 1 + I 2 + 2 0 ( i 1 ( k ) i 2 ( k ) ) 1 2 cos ( k Λ d ) d k ,
Δ ϕ = 2 π Λ d λ c ,
Δ ϕ Δ β = 8 π λ c h .

Metrics