Abstract

We report on the experimental observation of induced solitons in a passively mode-locked fiber ring laser with a birefringence cavity. Owing to the cross coupling between the two orthogonal polarization components of the laser, it was found that if a soliton was formed along one cavity polarization axis, a weak soliton was also induced along the orthogonal polarization axis, and depending on the net cavity birefringence, the induced soliton could have either the same or different center wavelengths to that of the inducing soliton. Moreover, the induced soliton always had the same group velocity as that of the inducing soliton. They formed a vector soliton in the cavity. Numerical simulations confirmed the experimental observations.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, Phys. Rev. Lett. 45, 1095 (1980).
    [CrossRef]
  2. L. Wang and C. C. Yang, Opt. Lett. 15, 474 (1990).
    [CrossRef] [PubMed]
  3. V. V. Afanasyev, Y. S. Kivshar, V. V. Konotop, and V. N. Serkin, Opt. Lett. 14, 805 (1989).
    [CrossRef] [PubMed]
  4. S. Trillo, S. Wabnitz, E. M. Wright, and G. I. Stegeman, Opt. Lett. 13, 871 (1988).
    [CrossRef] [PubMed]
  5. B.-J. Hong, C. C. Yang, and L. Wang, J. Opt. Soc. Am. B 8, 464 (1991).
    [CrossRef]
  6. M. Shalaby and A. J. Barthelemy, IEEE J. Quantum Electron. 28, 2736 (1992).
    [CrossRef]
  7. C. R. Menyuk, IEEE J. Quantum Electron. QE-23, 174 (1987).
    [CrossRef]
  8. S. T. Cundiff, B. C. Collings, and W. H. Knox, Opt. Express 1, 12 (1997).
    [CrossRef] [PubMed]
  9. M. L. Dennis and I. N. Duling III, IEEE J. Quantum Electron. 30, 1469 (1994).
    [CrossRef]
  10. N. N. Akhmediev, A. Ankiewicz, M. J. Lederer, and B. Luther-Davies, Opt. Lett. 23, 280 (1998).
    [CrossRef]
  11. K. Blow, N. Doran, and D. Wood, Opt. Lett. 12, 202 (1987).
    [CrossRef] [PubMed]
  12. H. Zhang, D. Y. Tang, L. M. Zhao, and N. Xiang, Opt. Express 16, 12618 (2008).
    [PubMed]

2008

1998

1997

1994

M. L. Dennis and I. N. Duling III, IEEE J. Quantum Electron. 30, 1469 (1994).
[CrossRef]

1992

M. Shalaby and A. J. Barthelemy, IEEE J. Quantum Electron. 28, 2736 (1992).
[CrossRef]

1991

1990

1989

1988

1987

K. Blow, N. Doran, and D. Wood, Opt. Lett. 12, 202 (1987).
[CrossRef] [PubMed]

C. R. Menyuk, IEEE J. Quantum Electron. QE-23, 174 (1987).
[CrossRef]

1980

L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, Phys. Rev. Lett. 45, 1095 (1980).
[CrossRef]

Afanasyev, V. V.

Akhmediev, N. N.

Ankiewicz, A.

Barthelemy, A. J.

M. Shalaby and A. J. Barthelemy, IEEE J. Quantum Electron. 28, 2736 (1992).
[CrossRef]

Blow, K.

Collings, B. C.

Cundiff, S. T.

Dennis, M. L.

M. L. Dennis and I. N. Duling III, IEEE J. Quantum Electron. 30, 1469 (1994).
[CrossRef]

Doran, N.

Duling, I. N.

M. L. Dennis and I. N. Duling III, IEEE J. Quantum Electron. 30, 1469 (1994).
[CrossRef]

Gordon, J. P.

L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, Phys. Rev. Lett. 45, 1095 (1980).
[CrossRef]

Hong, B.-J.

Kivshar, Y. S.

Knox, W. H.

Konotop, V. V.

Lederer, M. J.

Luther-Davies, B.

Menyuk, C. R.

C. R. Menyuk, IEEE J. Quantum Electron. QE-23, 174 (1987).
[CrossRef]

Mollenauer, L. F.

L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, Phys. Rev. Lett. 45, 1095 (1980).
[CrossRef]

Serkin, V. N.

Shalaby, M.

M. Shalaby and A. J. Barthelemy, IEEE J. Quantum Electron. 28, 2736 (1992).
[CrossRef]

Stegeman, G. I.

Stolen, R. H.

L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, Phys. Rev. Lett. 45, 1095 (1980).
[CrossRef]

Tang, D. Y.

Trillo, S.

Wabnitz, S.

Wang, L.

Wood, D.

Wright, E. M.

Xiang, N.

Yang, C. C.

Zhang, H.

Zhao, L. M.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of the experimental setup. EDF, erbium-doped fiber. WDM, wavelength division multiplexer.

Fig. 2
Fig. 2

Polarization-resolved vector soliton spectra experimentally measured. (a) Obtained under large cavity birefringence. (b) Obtained under relatively weaker cavity birefringence. The corresponding rf spectra after a polarizer are given in Fig. 2a.

Fig. 3
Fig. 3

Polarization-resolved vector soliton spectra numerically calculated. (a) L b = 0.1 m . (b) L b = 10 m . Pump strength G 0 = 80 .

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

{ u z = i β u δ u t i k 2 2 u t 2 + i k 6 3 u t 3 + i γ ( u 2 + 2 3 v 2 ) u + i γ 3 v 2 u * + g 2 u + g 2 Ω g 2 2 u t 2 v z = i β v + δ v t i k 2 2 v t 2 + i k 6 3 v t 3 + i γ ( v 2 + 2 3 u 2 ) v + i γ 3 u 2 v * + g 2 v + g 2 Ω g 2 2 v t 2 } ,
g = G exp [ ( u 2 + v 2 ) d t P sat ] ,
l s t = l s l 0 T rec u 2 + v 2 E sat l s ,

Metrics