Abstract

We report generation of terahertz (THz) radiation in a planar 61-μm-thick GaAs waveguide with a TM0 propagation mode, achieved by phase-matched difference frequency mixing. The THz output was centered near 2THz and had 1μW average power. As a pump source we utilized both the signal and the idler outputs of a near-degenerate type II synchronously pumped optical parametric oscillator operating near 2μm with the average powers of 250 and 750mW, correspondingly.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Ya. Tochitsky, J. E. Ralph, C. Sung, and C. Joshi, J. Appl. Phys. 98, 026101 (2005).
    [CrossRef]
  2. J. E. Schaar, K. L. Vodopyanov, and M. M. Fejer, Opt. Lett. 32, 1284 (2007).
    [CrossRef] [PubMed]
  3. D. E. Thompson and P. D. Coleman, IEEE Trans. Microwave Theory Tech. 22, 995 (1974).
    [CrossRef]
  4. V. Berger and C. Sirtori, Semicond. Sci. Technol. 19, 964 (2004).
    [CrossRef]
  5. J. I. Nishizawa, K. Suto, T. Tanabe, K. Saito, T. Kimura, and Y. Oyama, IEEE Photon. Technol. Lett. 19, 143 (2007).
    [CrossRef]
  6. G. Chang, C. J. Divin, J. Yang, M. A. Musheinish, S. L. Williamson, A. Galvanauskas, and T. B. Norris, Opt. Express 15, 16308 (2007).
    [CrossRef] [PubMed]
  7. E. J. Lim, H. M. Herka, M. L. Bortz, and M. M. Fejer, Appl. Phys. Lett. 59, 2207 (1991).
    [CrossRef]
  8. K. L. Vodopyanov, Laser Photonics Rev. 2, 11 (2008).
    [CrossRef]
  9. J. Hebling, A. G. Stepanov, G. Almasi, B. Bartal, and J. Kuhl, Appl. Phys. B 78, 593 (2004).
    [CrossRef]
  10. J. E. Schaar, K. L. Vodopyanov, P. S. Kuo, M. M. Fejer, X. Yu, A. Lin, J. S. Harris, D. Bliss, C. Lynch, V. G. Kozlov, and W. Hurlbut, IEEE J. Sel. Top. Quantum Electron. 14, 354 (2008).
    [CrossRef]
  11. K. L. Vodopyanov, Opt. Express 14, 2263 (2006).
    [CrossRef] [PubMed]

2008

K. L. Vodopyanov, Laser Photonics Rev. 2, 11 (2008).
[CrossRef]

J. E. Schaar, K. L. Vodopyanov, P. S. Kuo, M. M. Fejer, X. Yu, A. Lin, J. S. Harris, D. Bliss, C. Lynch, V. G. Kozlov, and W. Hurlbut, IEEE J. Sel. Top. Quantum Electron. 14, 354 (2008).
[CrossRef]

2007

2006

2005

S. Ya. Tochitsky, J. E. Ralph, C. Sung, and C. Joshi, J. Appl. Phys. 98, 026101 (2005).
[CrossRef]

2004

V. Berger and C. Sirtori, Semicond. Sci. Technol. 19, 964 (2004).
[CrossRef]

J. Hebling, A. G. Stepanov, G. Almasi, B. Bartal, and J. Kuhl, Appl. Phys. B 78, 593 (2004).
[CrossRef]

1991

E. J. Lim, H. M. Herka, M. L. Bortz, and M. M. Fejer, Appl. Phys. Lett. 59, 2207 (1991).
[CrossRef]

1974

D. E. Thompson and P. D. Coleman, IEEE Trans. Microwave Theory Tech. 22, 995 (1974).
[CrossRef]

Almasi, G.

J. Hebling, A. G. Stepanov, G. Almasi, B. Bartal, and J. Kuhl, Appl. Phys. B 78, 593 (2004).
[CrossRef]

Bartal, B.

J. Hebling, A. G. Stepanov, G. Almasi, B. Bartal, and J. Kuhl, Appl. Phys. B 78, 593 (2004).
[CrossRef]

Berger, V.

V. Berger and C. Sirtori, Semicond. Sci. Technol. 19, 964 (2004).
[CrossRef]

Bliss, D.

J. E. Schaar, K. L. Vodopyanov, P. S. Kuo, M. M. Fejer, X. Yu, A. Lin, J. S. Harris, D. Bliss, C. Lynch, V. G. Kozlov, and W. Hurlbut, IEEE J. Sel. Top. Quantum Electron. 14, 354 (2008).
[CrossRef]

Bortz, M. L.

E. J. Lim, H. M. Herka, M. L. Bortz, and M. M. Fejer, Appl. Phys. Lett. 59, 2207 (1991).
[CrossRef]

Chang, G.

Coleman, P. D.

D. E. Thompson and P. D. Coleman, IEEE Trans. Microwave Theory Tech. 22, 995 (1974).
[CrossRef]

Divin, C. J.

Fejer, M. M.

J. E. Schaar, K. L. Vodopyanov, P. S. Kuo, M. M. Fejer, X. Yu, A. Lin, J. S. Harris, D. Bliss, C. Lynch, V. G. Kozlov, and W. Hurlbut, IEEE J. Sel. Top. Quantum Electron. 14, 354 (2008).
[CrossRef]

J. E. Schaar, K. L. Vodopyanov, and M. M. Fejer, Opt. Lett. 32, 1284 (2007).
[CrossRef] [PubMed]

E. J. Lim, H. M. Herka, M. L. Bortz, and M. M. Fejer, Appl. Phys. Lett. 59, 2207 (1991).
[CrossRef]

Galvanauskas, A.

Harris, J. S.

J. E. Schaar, K. L. Vodopyanov, P. S. Kuo, M. M. Fejer, X. Yu, A. Lin, J. S. Harris, D. Bliss, C. Lynch, V. G. Kozlov, and W. Hurlbut, IEEE J. Sel. Top. Quantum Electron. 14, 354 (2008).
[CrossRef]

Hebling, J.

J. Hebling, A. G. Stepanov, G. Almasi, B. Bartal, and J. Kuhl, Appl. Phys. B 78, 593 (2004).
[CrossRef]

Herka, H. M.

E. J. Lim, H. M. Herka, M. L. Bortz, and M. M. Fejer, Appl. Phys. Lett. 59, 2207 (1991).
[CrossRef]

Hurlbut, W.

J. E. Schaar, K. L. Vodopyanov, P. S. Kuo, M. M. Fejer, X. Yu, A. Lin, J. S. Harris, D. Bliss, C. Lynch, V. G. Kozlov, and W. Hurlbut, IEEE J. Sel. Top. Quantum Electron. 14, 354 (2008).
[CrossRef]

Joshi, C.

S. Ya. Tochitsky, J. E. Ralph, C. Sung, and C. Joshi, J. Appl. Phys. 98, 026101 (2005).
[CrossRef]

Kimura, T.

J. I. Nishizawa, K. Suto, T. Tanabe, K. Saito, T. Kimura, and Y. Oyama, IEEE Photon. Technol. Lett. 19, 143 (2007).
[CrossRef]

Kozlov, V. G.

J. E. Schaar, K. L. Vodopyanov, P. S. Kuo, M. M. Fejer, X. Yu, A. Lin, J. S. Harris, D. Bliss, C. Lynch, V. G. Kozlov, and W. Hurlbut, IEEE J. Sel. Top. Quantum Electron. 14, 354 (2008).
[CrossRef]

Kuhl, J.

J. Hebling, A. G. Stepanov, G. Almasi, B. Bartal, and J. Kuhl, Appl. Phys. B 78, 593 (2004).
[CrossRef]

Kuo, P. S.

J. E. Schaar, K. L. Vodopyanov, P. S. Kuo, M. M. Fejer, X. Yu, A. Lin, J. S. Harris, D. Bliss, C. Lynch, V. G. Kozlov, and W. Hurlbut, IEEE J. Sel. Top. Quantum Electron. 14, 354 (2008).
[CrossRef]

Lim, E. J.

E. J. Lim, H. M. Herka, M. L. Bortz, and M. M. Fejer, Appl. Phys. Lett. 59, 2207 (1991).
[CrossRef]

Lin, A.

J. E. Schaar, K. L. Vodopyanov, P. S. Kuo, M. M. Fejer, X. Yu, A. Lin, J. S. Harris, D. Bliss, C. Lynch, V. G. Kozlov, and W. Hurlbut, IEEE J. Sel. Top. Quantum Electron. 14, 354 (2008).
[CrossRef]

Lynch, C.

J. E. Schaar, K. L. Vodopyanov, P. S. Kuo, M. M. Fejer, X. Yu, A. Lin, J. S. Harris, D. Bliss, C. Lynch, V. G. Kozlov, and W. Hurlbut, IEEE J. Sel. Top. Quantum Electron. 14, 354 (2008).
[CrossRef]

Musheinish, M. A.

Nishizawa, J. I.

J. I. Nishizawa, K. Suto, T. Tanabe, K. Saito, T. Kimura, and Y. Oyama, IEEE Photon. Technol. Lett. 19, 143 (2007).
[CrossRef]

Norris, T. B.

Oyama, Y.

J. I. Nishizawa, K. Suto, T. Tanabe, K. Saito, T. Kimura, and Y. Oyama, IEEE Photon. Technol. Lett. 19, 143 (2007).
[CrossRef]

Ralph, J. E.

S. Ya. Tochitsky, J. E. Ralph, C. Sung, and C. Joshi, J. Appl. Phys. 98, 026101 (2005).
[CrossRef]

Saito, K.

J. I. Nishizawa, K. Suto, T. Tanabe, K. Saito, T. Kimura, and Y. Oyama, IEEE Photon. Technol. Lett. 19, 143 (2007).
[CrossRef]

Schaar, J. E.

J. E. Schaar, K. L. Vodopyanov, P. S. Kuo, M. M. Fejer, X. Yu, A. Lin, J. S. Harris, D. Bliss, C. Lynch, V. G. Kozlov, and W. Hurlbut, IEEE J. Sel. Top. Quantum Electron. 14, 354 (2008).
[CrossRef]

J. E. Schaar, K. L. Vodopyanov, and M. M. Fejer, Opt. Lett. 32, 1284 (2007).
[CrossRef] [PubMed]

Sirtori, C.

V. Berger and C. Sirtori, Semicond. Sci. Technol. 19, 964 (2004).
[CrossRef]

Stepanov, A. G.

J. Hebling, A. G. Stepanov, G. Almasi, B. Bartal, and J. Kuhl, Appl. Phys. B 78, 593 (2004).
[CrossRef]

Sung, C.

S. Ya. Tochitsky, J. E. Ralph, C. Sung, and C. Joshi, J. Appl. Phys. 98, 026101 (2005).
[CrossRef]

Suto, K.

J. I. Nishizawa, K. Suto, T. Tanabe, K. Saito, T. Kimura, and Y. Oyama, IEEE Photon. Technol. Lett. 19, 143 (2007).
[CrossRef]

Tanabe, T.

J. I. Nishizawa, K. Suto, T. Tanabe, K. Saito, T. Kimura, and Y. Oyama, IEEE Photon. Technol. Lett. 19, 143 (2007).
[CrossRef]

Thompson, D. E.

D. E. Thompson and P. D. Coleman, IEEE Trans. Microwave Theory Tech. 22, 995 (1974).
[CrossRef]

Tochitsky, S. Ya.

S. Ya. Tochitsky, J. E. Ralph, C. Sung, and C. Joshi, J. Appl. Phys. 98, 026101 (2005).
[CrossRef]

Vodopyanov, K. L.

J. E. Schaar, K. L. Vodopyanov, P. S. Kuo, M. M. Fejer, X. Yu, A. Lin, J. S. Harris, D. Bliss, C. Lynch, V. G. Kozlov, and W. Hurlbut, IEEE J. Sel. Top. Quantum Electron. 14, 354 (2008).
[CrossRef]

K. L. Vodopyanov, Laser Photonics Rev. 2, 11 (2008).
[CrossRef]

J. E. Schaar, K. L. Vodopyanov, and M. M. Fejer, Opt. Lett. 32, 1284 (2007).
[CrossRef] [PubMed]

K. L. Vodopyanov, Opt. Express 14, 2263 (2006).
[CrossRef] [PubMed]

Williamson, S. L.

Yang, J.

Yu, X.

J. E. Schaar, K. L. Vodopyanov, P. S. Kuo, M. M. Fejer, X. Yu, A. Lin, J. S. Harris, D. Bliss, C. Lynch, V. G. Kozlov, and W. Hurlbut, IEEE J. Sel. Top. Quantum Electron. 14, 354 (2008).
[CrossRef]

Appl. Phys. B

J. Hebling, A. G. Stepanov, G. Almasi, B. Bartal, and J. Kuhl, Appl. Phys. B 78, 593 (2004).
[CrossRef]

Appl. Phys. Lett.

E. J. Lim, H. M. Herka, M. L. Bortz, and M. M. Fejer, Appl. Phys. Lett. 59, 2207 (1991).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

J. E. Schaar, K. L. Vodopyanov, P. S. Kuo, M. M. Fejer, X. Yu, A. Lin, J. S. Harris, D. Bliss, C. Lynch, V. G. Kozlov, and W. Hurlbut, IEEE J. Sel. Top. Quantum Electron. 14, 354 (2008).
[CrossRef]

IEEE Photon. Technol. Lett.

J. I. Nishizawa, K. Suto, T. Tanabe, K. Saito, T. Kimura, and Y. Oyama, IEEE Photon. Technol. Lett. 19, 143 (2007).
[CrossRef]

IEEE Trans. Microwave Theory Tech.

D. E. Thompson and P. D. Coleman, IEEE Trans. Microwave Theory Tech. 22, 995 (1974).
[CrossRef]

J. Appl. Phys.

S. Ya. Tochitsky, J. E. Ralph, C. Sung, and C. Joshi, J. Appl. Phys. 98, 026101 (2005).
[CrossRef]

Laser Photonics Rev.

K. L. Vodopyanov, Laser Photonics Rev. 2, 11 (2008).
[CrossRef]

Opt. Express

Opt. Lett.

Semicond. Sci. Technol.

V. Berger and C. Sirtori, Semicond. Sci. Technol. 19, 964 (2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of the experiment. The signal ( ω 3 ) and the idler ( ω 2 ) beams from a near-degenerate (around 2128 nm ) OPO are mixed in the GaAs WG to generate a THz wave through the DFG process ω 1 = ω 3 ω 2 . The output is collimated by an off-axis parabolic mirror and detected using a room-temperature DLaTGS detector. Inset: calculated THz intensity distribution at the output face of the WG.

Fig. 2
Fig. 2

Planar GaAs WG dispersion for TM m modes ( m = 0 , 1 , 2 ) for d = 61 μ m . Bulk GaAs THz dispersion (gray line) and group optical index ( n g ) for λ 2.1 μ m (dashed line) are also shown. The arrow corresponds to the frequency where the phase-matching condition is achieved in our experiment.

Fig. 3
Fig. 3

THz output from the WG as a function of frequency. Also shown are calculated tuning curves ( TM 0 mode, d = 61 μ m , α THz = 3 cm 1 ) for the monochromatic pump (dotted curve) and for the pump with a 100 GHz bandwidth (solid curve).

Tables (1)

Tables Icon

Table 1 Linear, Nonlinear Optical, and THz Properties, as Well as FOMs, for GaAs, GaP, and Li Nb O 3 Crystals a

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

P 1 ( d eff 2 n opt 2 n THz ) L 2 P 2 P 3 ,
FOM = d eff 2 ( n opt 2 n THz α THz 2 ) .

Metrics