Abstract

For the first time to our knowledge the observation of near-IR multiple higher-order stopgaps in three-dimensional photonic crystals (PhCs) fabricated using the direct-laser-writing method in thick chalcogenide glass films is reported. The fabrication and etching conditions necessary to realize well-defined structures are presented. The fabricated PhCs exhibit higher-order stopgaps, which are only evident in high-quality structures. The higher-order stopgaps observed permit these high-refractive-index and high-nonlinear PhCs to be used directly as functional photonic devices operating at telecommunication wavelengths without further miniaturizing structural dimensions.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription