Abstract

The near-IR emission spectra of Er3+Tm3+ codoped 70GeS220In2S310CsI chalcohalide glasses were studied with an 808nm laser as an excitation source. A broad emission extending from 1.35to1.7μm with a FWHM of 160nm was recorded in a 0.1mol.% Er2S3, 0.5mol.% Tm2S3 codoped chalcohalide glass. The fluorescence decay curves of glasses were measured by monitoring the emissions of Tm3+ at 1460nm and Er3+ at 1540nm, and the lifetimes were obtained from the first-order exponential fit. The luminescence mechanism and the possible energy-transfer processes are discussed with respect to the energy-level diagram of Er3+ and Tm3+ ions.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Xiao, R. Serna, C. N. Afonso, and I. Vickridge, Appl. Phys. Lett. 87, 1103-1 (2005).
  2. R. Balda, J. Fernández, S. Gaecía-Revilla, and J. M. Fernández-Navarro, Opt. Express 15, 6750 (2007).
    [CrossRef] [PubMed]
  3. T. Komukai, T. Yamamoto, T. Sugawa, and Y. Miyajima, IEEE J. Quantum Electron. 31, 1880 (1995).
    [CrossRef]
  4. D. J. Lee, J. Heo, and S. H. Park, J. Non-Cryst. Solids 331, 184 (2003).
    [CrossRef]
  5. J. H. Song and J. Heo, J. Mater. Res. 21, 2323 (2006).
    [CrossRef]
  6. S. Mao, H. Tao, X. Zhao, and G. Dong, J. Non-Cryst. Solids 354, 1298 (2008).
    [CrossRef]
  7. D. C. Yeh, R. R. Petrin, W. A. Sibley, V. Madigou, J. L. Adam, and M. J. Suscavage, Phys. Rev. B 39, 80 (1989).
    [CrossRef]
  8. L. Huang, A. Jha, S. Shen, and X. Liu, Opt. Express 12, 2429 (2004).
    [CrossRef] [PubMed]
  9. L. Pauling, J. Am. Chem. Soc. 51, 1010 (1929).
    [CrossRef]
  10. G. Chen, Y. Yang, F. Xia, D. Zhao, S. Baccaro, A. Cecilia, and M. Nikl, J. Am. Ceram. Soc. 88, 293 (2005).

2008

S. Mao, H. Tao, X. Zhao, and G. Dong, J. Non-Cryst. Solids 354, 1298 (2008).
[CrossRef]

2007

2006

J. H. Song and J. Heo, J. Mater. Res. 21, 2323 (2006).
[CrossRef]

2005

G. Chen, Y. Yang, F. Xia, D. Zhao, S. Baccaro, A. Cecilia, and M. Nikl, J. Am. Ceram. Soc. 88, 293 (2005).

Z. Xiao, R. Serna, C. N. Afonso, and I. Vickridge, Appl. Phys. Lett. 87, 1103-1 (2005).

2004

2003

D. J. Lee, J. Heo, and S. H. Park, J. Non-Cryst. Solids 331, 184 (2003).
[CrossRef]

1995

T. Komukai, T. Yamamoto, T. Sugawa, and Y. Miyajima, IEEE J. Quantum Electron. 31, 1880 (1995).
[CrossRef]

1989

D. C. Yeh, R. R. Petrin, W. A. Sibley, V. Madigou, J. L. Adam, and M. J. Suscavage, Phys. Rev. B 39, 80 (1989).
[CrossRef]

1929

L. Pauling, J. Am. Chem. Soc. 51, 1010 (1929).
[CrossRef]

Adam, J. L.

D. C. Yeh, R. R. Petrin, W. A. Sibley, V. Madigou, J. L. Adam, and M. J. Suscavage, Phys. Rev. B 39, 80 (1989).
[CrossRef]

Afonso, C. N.

Z. Xiao, R. Serna, C. N. Afonso, and I. Vickridge, Appl. Phys. Lett. 87, 1103-1 (2005).

Baccaro, S.

G. Chen, Y. Yang, F. Xia, D. Zhao, S. Baccaro, A. Cecilia, and M. Nikl, J. Am. Ceram. Soc. 88, 293 (2005).

Balda, R.

Cecilia, A.

G. Chen, Y. Yang, F. Xia, D. Zhao, S. Baccaro, A. Cecilia, and M. Nikl, J. Am. Ceram. Soc. 88, 293 (2005).

Chen, G.

G. Chen, Y. Yang, F. Xia, D. Zhao, S. Baccaro, A. Cecilia, and M. Nikl, J. Am. Ceram. Soc. 88, 293 (2005).

Dong, G.

S. Mao, H. Tao, X. Zhao, and G. Dong, J. Non-Cryst. Solids 354, 1298 (2008).
[CrossRef]

Fernández, J.

Fernández-Navarro, J. M.

Gaecía-Revilla, S.

Heo, J.

J. H. Song and J. Heo, J. Mater. Res. 21, 2323 (2006).
[CrossRef]

D. J. Lee, J. Heo, and S. H. Park, J. Non-Cryst. Solids 331, 184 (2003).
[CrossRef]

Huang, L.

Jha, A.

Komukai, T.

T. Komukai, T. Yamamoto, T. Sugawa, and Y. Miyajima, IEEE J. Quantum Electron. 31, 1880 (1995).
[CrossRef]

Lee, D. J.

D. J. Lee, J. Heo, and S. H. Park, J. Non-Cryst. Solids 331, 184 (2003).
[CrossRef]

Liu, X.

Madigou, V.

D. C. Yeh, R. R. Petrin, W. A. Sibley, V. Madigou, J. L. Adam, and M. J. Suscavage, Phys. Rev. B 39, 80 (1989).
[CrossRef]

Mao, S.

S. Mao, H. Tao, X. Zhao, and G. Dong, J. Non-Cryst. Solids 354, 1298 (2008).
[CrossRef]

Miyajima, Y.

T. Komukai, T. Yamamoto, T. Sugawa, and Y. Miyajima, IEEE J. Quantum Electron. 31, 1880 (1995).
[CrossRef]

Nikl, M.

G. Chen, Y. Yang, F. Xia, D. Zhao, S. Baccaro, A. Cecilia, and M. Nikl, J. Am. Ceram. Soc. 88, 293 (2005).

Park, S. H.

D. J. Lee, J. Heo, and S. H. Park, J. Non-Cryst. Solids 331, 184 (2003).
[CrossRef]

Pauling, L.

L. Pauling, J. Am. Chem. Soc. 51, 1010 (1929).
[CrossRef]

Petrin, R. R.

D. C. Yeh, R. R. Petrin, W. A. Sibley, V. Madigou, J. L. Adam, and M. J. Suscavage, Phys. Rev. B 39, 80 (1989).
[CrossRef]

Serna, R.

Z. Xiao, R. Serna, C. N. Afonso, and I. Vickridge, Appl. Phys. Lett. 87, 1103-1 (2005).

Shen, S.

Sibley, W. A.

D. C. Yeh, R. R. Petrin, W. A. Sibley, V. Madigou, J. L. Adam, and M. J. Suscavage, Phys. Rev. B 39, 80 (1989).
[CrossRef]

Song, J. H.

J. H. Song and J. Heo, J. Mater. Res. 21, 2323 (2006).
[CrossRef]

Sugawa, T.

T. Komukai, T. Yamamoto, T. Sugawa, and Y. Miyajima, IEEE J. Quantum Electron. 31, 1880 (1995).
[CrossRef]

Suscavage, M. J.

D. C. Yeh, R. R. Petrin, W. A. Sibley, V. Madigou, J. L. Adam, and M. J. Suscavage, Phys. Rev. B 39, 80 (1989).
[CrossRef]

Tao, H.

S. Mao, H. Tao, X. Zhao, and G. Dong, J. Non-Cryst. Solids 354, 1298 (2008).
[CrossRef]

Vickridge, I.

Z. Xiao, R. Serna, C. N. Afonso, and I. Vickridge, Appl. Phys. Lett. 87, 1103-1 (2005).

Xia, F.

G. Chen, Y. Yang, F. Xia, D. Zhao, S. Baccaro, A. Cecilia, and M. Nikl, J. Am. Ceram. Soc. 88, 293 (2005).

Xiao, Z.

Z. Xiao, R. Serna, C. N. Afonso, and I. Vickridge, Appl. Phys. Lett. 87, 1103-1 (2005).

Yamamoto, T.

T. Komukai, T. Yamamoto, T. Sugawa, and Y. Miyajima, IEEE J. Quantum Electron. 31, 1880 (1995).
[CrossRef]

Yang, Y.

G. Chen, Y. Yang, F. Xia, D. Zhao, S. Baccaro, A. Cecilia, and M. Nikl, J. Am. Ceram. Soc. 88, 293 (2005).

Yeh, D. C.

D. C. Yeh, R. R. Petrin, W. A. Sibley, V. Madigou, J. L. Adam, and M. J. Suscavage, Phys. Rev. B 39, 80 (1989).
[CrossRef]

Zhao, D.

G. Chen, Y. Yang, F. Xia, D. Zhao, S. Baccaro, A. Cecilia, and M. Nikl, J. Am. Ceram. Soc. 88, 293 (2005).

Zhao, X.

S. Mao, H. Tao, X. Zhao, and G. Dong, J. Non-Cryst. Solids 354, 1298 (2008).
[CrossRef]

Appl. Phys. Lett.

Z. Xiao, R. Serna, C. N. Afonso, and I. Vickridge, Appl. Phys. Lett. 87, 1103-1 (2005).

IEEE J. Quantum Electron.

T. Komukai, T. Yamamoto, T. Sugawa, and Y. Miyajima, IEEE J. Quantum Electron. 31, 1880 (1995).
[CrossRef]

J. Am. Ceram. Soc.

G. Chen, Y. Yang, F. Xia, D. Zhao, S. Baccaro, A. Cecilia, and M. Nikl, J. Am. Ceram. Soc. 88, 293 (2005).

J. Am. Chem. Soc.

L. Pauling, J. Am. Chem. Soc. 51, 1010 (1929).
[CrossRef]

J. Mater. Res.

J. H. Song and J. Heo, J. Mater. Res. 21, 2323 (2006).
[CrossRef]

J. Non-Cryst. Solids

S. Mao, H. Tao, X. Zhao, and G. Dong, J. Non-Cryst. Solids 354, 1298 (2008).
[CrossRef]

D. J. Lee, J. Heo, and S. H. Park, J. Non-Cryst. Solids 331, 184 (2003).
[CrossRef]

Opt. Express

Phys. Rev. B

D. C. Yeh, R. R. Petrin, W. A. Sibley, V. Madigou, J. L. Adam, and M. J. Suscavage, Phys. Rev. B 39, 80 (1989).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Absorption spectrum of the G3 glass at room temperature.

Fig. 2
Fig. 2

Room-temperature emission spectra of the Er 3 + Tm 3 + codoped with different ratio excited at 808 nm .

Fig. 3
Fig. 3

Fluorescence decay curves of the G3 glass when pumped at 808 nm . It was measured by monitoring the emissions of 1460 and 1540 nm at room temperature. The correlation coefficients for the fits by the first-order exponential decay equation ( 1460 nm : I = 73.85012 exp t 0.00040 + 0.00318 ; 1540 nm : I = 0.35802 exp t 0.00111 + 0.00433 ) are 0.9873 for Tm ( 1460 nm ) and 0.9878 for Er ( 1540 nm ) . The inset is the lifetime of both emissions as a function of Tm 2 S 3 concentration.

Fig. 4
Fig. 4

Energy-level diagram of Er 3 + and Tm 3 + ions and the near-IR luminescence mechanisms of Er 3 + Tm 3 + codoped chalcohalide glasses with an 808 nm LD excitation at room temperature. The solid lines stand for the absorption and emission transitions for Er 3 + and Tm 3 + ions. The curves stand for energy transfers between Er 3 + and Tm 3 + ions.

Metrics