Abstract

We introduce a methodology to determine quantitatively the depth resolution limit in luminescence diffuse optical imaging. The approach is based on a Cramer–Rao statistical analysis, a noise model, and calculations of photon transport in tissues. We illustrate the method in the case of luminescence imaging in a brain–skull model, showing its potential applications in molecular imaging on small animals.

© 2008 Optical Society of America

Full Article  |  PDF Article
Related Articles
Practical reconstruction method for bioluminescence tomography

Wenxiang Cong, Ge Wang, Durairaj Kumar, Yi Liu, Ming Jiang, Lihong V. Wang, Eric A. Hoffman, Geoffrey McLennan, Paul B. McCray, Joseph Zabner, and Alexander Cong
Opt. Express 13(18) 6756-6771 (2005)

In vivo mouse studies with bioluminescence tomography

Ge Wang, Wenxiang Cong, Kumar Durairaj, Xin Qian, Haiou Shen, Patrick Sinn, Eric Hoffman, Geoffrey McLennan, and Michael Henry
Opt. Express 14(17) 7801-7809 (2006)

Tomographic bioluminescence imaging with varying boundary conditions

Vadim Y. Soloviev
Appl. Opt. 46(14) 2778-2784 (2007)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (7)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription