Abstract

We present a novel reflectometric technique for the measurement of orientation and modulus of the linear birefringence vector in single-mode optical fibers. The technique provides information also on circular birefringence, although this component, if present, appears as a rotation of the linear birefringence. A detailed theoretical analysis is reported and validated by experimental results.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. J. Rogers, Appl. Opt. 20, 1060 (1981).
    [CrossRef] [PubMed]
  2. A. Galtarossa and L. Palmieri, J. Lightwave Technol. 22, 1103 (2004).
    [CrossRef]
  3. R. M. A. Azzam, J. Opt. Soc. Am. 68, 1756 (1978).
    [CrossRef]
  4. R. Ulrich and A. Simon, Appl. Opt. 18, 2241 (1979).
    [CrossRef] [PubMed]
  5. J. P. Gordon and H. Kogelnik, Proc. Natl. Acad. Sci. USA 97, 4541 (2000).
    [CrossRef] [PubMed]
  6. R. C. Jones, J. Opt. Soc. Am. 38, 671(1948).
    [CrossRef]
  7. A. Galtarossa, L. Palmieri, M. Schiano, and T. Tambosso, Opt. Lett. 25, 1322 (2000).
    [CrossRef]
  8. P. K. A. Wai and C. R. Menyuk, J. Lightwave Technol. 14, 148 (1996).
    [CrossRef]
  9. A. Galtarossa, L. Palmieri, A. Pizzinat, M. Schiano, and T. Tambosso, J. Lightwave Technol. 18, 1389 (2000).
    [CrossRef]
  10. J. G. Ellison and A. S. Siddiqui, J. Lightwave Technol. 18, 1226 (2000).
    [CrossRef]
  11. R. Goto, S. Tanigawa, S. Matsuo, and K. Himeno, J. Lightwave Technol. 24, 3914 (2006).
    [CrossRef]
  12. T. Ozeki, S. Seki, and K. Iwasaki, J. Lightwave Technol. 24, 3882 (2006).
    [CrossRef]
  13. A. Galtarossa, D. Grosso, L. Palmieri, and L. Schenato, in Proceedings of 34th European Conference on Optical Communications (ECOC 2008), paper P.1.23.
  14. A. Galtarossa and L. Palmieri, J. Lightwave Technol. 20, 1149 (2002).
    [CrossRef]

2006 (2)

2004 (1)

2002 (1)

2000 (4)

1996 (1)

P. K. A. Wai and C. R. Menyuk, J. Lightwave Technol. 14, 148 (1996).
[CrossRef]

1981 (1)

1979 (1)

1978 (1)

Azzam, R. M. A.

Ellison, J. G.

Galtarossa, A.

Gordon, J. P.

J. P. Gordon and H. Kogelnik, Proc. Natl. Acad. Sci. USA 97, 4541 (2000).
[CrossRef] [PubMed]

Goto, R.

Grosso, D.

A. Galtarossa, D. Grosso, L. Palmieri, and L. Schenato, in Proceedings of 34th European Conference on Optical Communications (ECOC 2008), paper P.1.23.

Himeno, K.

Iwasaki, K.

Jones, R. C.

Kogelnik, H.

J. P. Gordon and H. Kogelnik, Proc. Natl. Acad. Sci. USA 97, 4541 (2000).
[CrossRef] [PubMed]

Matsuo, S.

Menyuk, C. R.

P. K. A. Wai and C. R. Menyuk, J. Lightwave Technol. 14, 148 (1996).
[CrossRef]

Ozeki, T.

Palmieri, L.

Pizzinat, A.

Rogers, A. J.

Schenato, L.

A. Galtarossa, D. Grosso, L. Palmieri, and L. Schenato, in Proceedings of 34th European Conference on Optical Communications (ECOC 2008), paper P.1.23.

Schiano, M.

Seki, S.

Siddiqui, A. S.

Simon, A.

Tambosso, T.

Tanigawa, S.

Ulrich, R.

Wai, P. K. A.

P. K. A. Wai and C. R. Menyuk, J. Lightwave Technol. 14, 148 (1996).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Three components of v ¯ R ( z ) as a function of z (starting from top, the n th graph corresponds to the n th component). Vertical axes are in radians per meter.

Fig. 2
Fig. 2

Birefringence rotation angle Ψ ( z ) as a function of distance.

Fig. 3
Fig. 3

PDFs of the z derivative of Ψ ( z ) for the three fibers; curves have normalized area.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Θ ( z ) = 2 θ ( z ) 0 z β 3 ( t ) d t .
d Q d z = ( F 2 , 3 M F R T β ¯ R ) × Q = 1 2 β ¯ B × Q .
v ¯ ( z ) = 1 2 Q I T ( z ) β ¯ B ( z ) = Q ( z 0 ) β ¯ R ( z ) ,
v ¯ R ( z ) = T v ¯ ( z ) = ± R 3 ( ξ ) β ¯ R ( z ) ,

Metrics