Abstract

We report the generation of a stable continuous-wave low-frequency squeezed vacuum field with a squeezing level of 7.4±0.1dB at 1064nm, the wavelength at which laser-interferometric gravitational wave (GW) detectors operate, using periodically poled KTiOPO4 (PPKTP) in a subthreshold optical parametric oscillator. The squeezing was observed in a broad band of frequencies above 700Hz where the sensitivity of the currently operational GW detectors is limited by shot noise. PPKTP has the advantages of higher nonlinearity, smaller pump-induced seed absorption, and wider temperature tuning range than alternative nonlinear materials such as MgO-doped or periodically poled LiNbO3, and is, therefore, an excellent material for generation of squeezed vacuum fields for application to laser interferometers for GW detection.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. http://www.ligo.caltech.edu/docs/M/M060056-07/M060056-07.pdf.
  2. B. Barish and R. Weiss, Phys. Today 52(10), 44 (1999).
    [CrossRef]
  3. K. McKenzie, N. Grosse, W. P. Bowen, S. Whitcomb, M. B. Gray, D. E. McClelland, and P. K. Lam, Phys. Rev. Lett. 93, 161105 (2004).
    [CrossRef] [PubMed]
  4. H. Vahlbruch, S. Chelkowski, B. Hage, A. Franzen, K. Danzmann, and R. Schnabel, Phys. Rev. Lett. 97, 011101 (2006).
    [CrossRef] [PubMed]
  5. Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, Appl. Phys. Lett. 78, 1970 (2001).
    [CrossRef]
  6. T. Y. Fan, C. E. Huang, B. Q. Hu, R. C. Eckardt, Y. X. Fan, R. L. Byer, and R. S. Feigelson, Appl. Opt. 26, 2394 (1987).
    [CrossRef]
  7. J. Laurat, T. Coudreau, N. Treps, A. Maitre, and C. Fabre, Phys. Rev. Lett. 91, 213601 (2003).
    [CrossRef] [PubMed]
  8. S. Feng and O. Pfister, Opt. Lett. 29, 2800 (2004).
    [CrossRef] [PubMed]
  9. T. Aoki, G. Takahashi, and A. Furusawa, Opt. Express 14, 6930 (2006).
    [CrossRef] [PubMed]
  10. Y. Takeno, M. Yukawa, H. Yonezawa, and A. Furusawa, Opt. Express 15, 4321 (2007).
    [CrossRef] [PubMed]
  11. T. Hirano, K. Kotani, T. Ishibashi, S. Okude, and T. Kuwamono, Opt. Lett. 30, 1722 (2005).
    [CrossRef] [PubMed]
  12. J. Rollins, D. Ottaway, M. Zucker, and R. Weiss, Opt. Lett. 29, 1876 (2002).
    [CrossRef]
  13. C. M. Caves and B. L. Schumaker, Phys. Rev. A 31, 3068 (1985).
    [CrossRef] [PubMed]
  14. K. McKenzie, E. E. Mikhailov, K. Goda, P. K. Lam, N. Grosse, M. B. Gray, N. Mavalvala, and D. E. McClelland, J. Opt. B 7, S421 (2005).
    [CrossRef]

2007 (1)

2006 (2)

H. Vahlbruch, S. Chelkowski, B. Hage, A. Franzen, K. Danzmann, and R. Schnabel, Phys. Rev. Lett. 97, 011101 (2006).
[CrossRef] [PubMed]

T. Aoki, G. Takahashi, and A. Furusawa, Opt. Express 14, 6930 (2006).
[CrossRef] [PubMed]

2005 (2)

K. McKenzie, E. E. Mikhailov, K. Goda, P. K. Lam, N. Grosse, M. B. Gray, N. Mavalvala, and D. E. McClelland, J. Opt. B 7, S421 (2005).
[CrossRef]

T. Hirano, K. Kotani, T. Ishibashi, S. Okude, and T. Kuwamono, Opt. Lett. 30, 1722 (2005).
[CrossRef] [PubMed]

2004 (2)

K. McKenzie, N. Grosse, W. P. Bowen, S. Whitcomb, M. B. Gray, D. E. McClelland, and P. K. Lam, Phys. Rev. Lett. 93, 161105 (2004).
[CrossRef] [PubMed]

S. Feng and O. Pfister, Opt. Lett. 29, 2800 (2004).
[CrossRef] [PubMed]

2003 (1)

J. Laurat, T. Coudreau, N. Treps, A. Maitre, and C. Fabre, Phys. Rev. Lett. 91, 213601 (2003).
[CrossRef] [PubMed]

2002 (1)

2001 (1)

Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, Appl. Phys. Lett. 78, 1970 (2001).
[CrossRef]

1999 (1)

B. Barish and R. Weiss, Phys. Today 52(10), 44 (1999).
[CrossRef]

1987 (1)

T. Y. Fan, C. E. Huang, B. Q. Hu, R. C. Eckardt, Y. X. Fan, R. L. Byer, and R. S. Feigelson, Appl. Opt. 26, 2394 (1987).
[CrossRef]

1985 (1)

C. M. Caves and B. L. Schumaker, Phys. Rev. A 31, 3068 (1985).
[CrossRef] [PubMed]

Appl. Opt. (1)

T. Y. Fan, C. E. Huang, B. Q. Hu, R. C. Eckardt, Y. X. Fan, R. L. Byer, and R. S. Feigelson, Appl. Opt. 26, 2394 (1987).
[CrossRef]

Appl. Phys. Lett. (1)

Y. Furukawa, K. Kitamura, A. Alexandrovski, R. K. Route, M. M. Fejer, and G. Foulon, Appl. Phys. Lett. 78, 1970 (2001).
[CrossRef]

J. Opt. B (1)

K. McKenzie, E. E. Mikhailov, K. Goda, P. K. Lam, N. Grosse, M. B. Gray, N. Mavalvala, and D. E. McClelland, J. Opt. B 7, S421 (2005).
[CrossRef]

Opt. Express (2)

Opt. Lett. (3)

Phys. Rev. A (1)

C. M. Caves and B. L. Schumaker, Phys. Rev. A 31, 3068 (1985).
[CrossRef] [PubMed]

Phys. Rev. Lett. (3)

J. Laurat, T. Coudreau, N. Treps, A. Maitre, and C. Fabre, Phys. Rev. Lett. 91, 213601 (2003).
[CrossRef] [PubMed]

K. McKenzie, N. Grosse, W. P. Bowen, S. Whitcomb, M. B. Gray, D. E. McClelland, and P. K. Lam, Phys. Rev. Lett. 93, 161105 (2004).
[CrossRef] [PubMed]

H. Vahlbruch, S. Chelkowski, B. Hage, A. Franzen, K. Danzmann, and R. Schnabel, Phys. Rev. Lett. 97, 011101 (2006).
[CrossRef] [PubMed]

Phys. Today (1)

B. Barish and R. Weiss, Phys. Today 52(10), 44 (1999).
[CrossRef]

Other (1)

http://www.ligo.caltech.edu/docs/M/M060056-07/M060056-07.pdf.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Schematic of the experiment. LASER1, Nd:YAG MOPA laser; LASER2, Lightwave 126 laser; FI, Faraday isolator; MC, mode-cleaning fiber; PM, electro-optic phase modulator; DBS, dichroic beam splitter; PBS, polarizing beam splitter; BS, 50 50 beam splitter; BD, bean dump; PO, pickoff mirror; λ 4 , quarter-wave plate; PD1–PD8, photodiodes; OC1–OC5, LOs ( 13.3 MHz , 16.7 MHz , 49.5 MHz , 624 MHz , and 13.5 kHz ). Solid lines, coherent fields; dotted line, squeezed vacuum field. The low-frequency spectrum analyzer (Stanford Research Systems SR785), which is not shown in the figure, is used to measure the broadband spectrum of the balanced photodetector output.

Fig. 2
Fig. 2

Fixed-frequency spectra of shot noise and squeezed/antisqueezed noise power when the squeeze angle was scanned as a function of time. The measurements were done at 900 kHz with zero frequency span. The resolution bandwidth is 100 kHz , and the video bandwidth is 3 kHz . The squeeze angle was scanned by the PZT (PZT3) with a ramp function at 10 Hz . The electronic noise was 17.4 dB below the shot-noise level.

Fig. 3
Fig. 3

Broadband spectra of shot noise, squeezed shot noise, and electronic noise. The spectra were averaged 2000 times. The squeeze angle was noise locked without any coherent light. The spikes at 13.5 kHz and 15.7 kHz are due to the modulation of the PZT (PZT3) for the noise-locking technique.

Metrics