Abstract

We report a high-power (AlGaIn)(AsSb) semiconductor disk laser emitting around 2μm. With a diamond heat spreader used for thermal management, a maximum output power of just over 5W and slope efficiencies of over 25% were demonstrated. The output wavelength was tunable over an 80nm range centered at 1.98μm. The beam propagation parameter (M2) was measured to be in the range of 1.1 to 1.4 for output powers up to 3W.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. D. Z. Garbuzov, H. Lee, V. Khalfin, R. Martinelli, J. C. Connolly, and G. L. Belenky, IEEE Photon. Technol. Lett. 11, 794 (1999).
    [CrossRef]
  2. M. Rattunde, J. Schmitz, C. Mermelstein, R. Kiefer, and J. Wagner, in Mid-Infrared Semiconductor Optoelectronics, A.Krier, ed., Vol. 118 of Springer Series in Optical Science (Springer, 2006), pp. 131-157.
    [CrossRef]
  3. R. Kaspi, A. P. Ongstad, G. C. Dente, J. R. Chavez, M. L. Tilton, and D. M. Gianardi, Appl. Phys. Lett. 88, 041122 (2006).
    [CrossRef]
  4. M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, IEEE Photon. Technol. Lett. 9, 1063 (1997).
    [CrossRef]
  5. L. Cerutti, A. Garnache, A. Ouvrard, and F. Genty, J. Cryst. Growth 268, 128 (2004).
    [CrossRef]
  6. J. E. Hastie, L. G. Morton, A. J. Kemp, M. D. Dawson, A. B. Krysa, and J. S. Roberts, Appl. Phys. Lett. 89, 061114 (2006).
    [CrossRef]
  7. N. Schulz, M. Rattunde, C. Manz, K. Kohler, J. Wagner, S. S. Beyertt, U. Brauch, T. Kubler, and A. Giesen, IEEE Photon. Technol. Lett. 18, 1070 (2006).
    [CrossRef]
  8. A. Harkonen, M. Guina, O. Okhotnikov, K. Rossner, M. Hummer, T. Lehnhardt, M. Muller, A. Forchel, and M. Fischer, Opt. Express 14, 6479 (2006).
    [CrossRef] [PubMed]
  9. M. Rattunde, N. Schulz, B. Ritzenthaler, B. Rosener, C. Manz, K. Kohler, J. Worner, and J. Wagner, Proc. SPIE 6479, 647915 (2007).
    [CrossRef]
  10. S. W. Corzine, R. S. Geels, J. W. Scott, R. H. Yan, and L. A. Coldren, IEEE J. Quantum Electron. 25, 1513 (1989).
    [CrossRef]
  11. N. Schulz, M. Rattunde, B. Ritzenthaler, C. Manz, K. Kohler, and J. Wagner, IEEE Photon. Technol. Lett. 19, 1741 (2007).
    [CrossRef]
  12. Z. L. Liau, Appl. Phys. Lett. 77, 651 (2000).
    [CrossRef]
  13. J.-M. Hopkins, S. A. Smith, C. W. Jeon, H. D. Sun, D. Burns, S. Calvez, M. D. Dawson, T. Jouhti, and M. Pessa, Electron. Lett. 40, 30 (2004).
    [CrossRef]
  14. A. J. Kemp, J.-M. Hopkins, A. J. Maclean, N. Schulz, M. Rattunde, J. Wagner, and D. Burns, IEEE J. Quantum Electron. 44, 125 (2008).
    [CrossRef]
  15. F. van Loon, A. J. Kemp, A. J. Maclean, S. Calvez, J. M. Hopkins, J. E. Hastie, M. D. Dawson, and D. Burns, Opt. Express 14, 9250 (2006).
    [CrossRef] [PubMed]
  16. J.-M. Hopkins, A. J. Maclean, D. Burns, E. Riis, N. Schulz, M. Rattunde, C. Manz, K. Kohler, and J. Wagner, Opt. Express 15, 8212 (2007).
    [CrossRef] [PubMed]

2008

A. J. Kemp, J.-M. Hopkins, A. J. Maclean, N. Schulz, M. Rattunde, J. Wagner, and D. Burns, IEEE J. Quantum Electron. 44, 125 (2008).
[CrossRef]

2007

M. Rattunde, N. Schulz, B. Ritzenthaler, B. Rosener, C. Manz, K. Kohler, J. Worner, and J. Wagner, Proc. SPIE 6479, 647915 (2007).
[CrossRef]

N. Schulz, M. Rattunde, B. Ritzenthaler, C. Manz, K. Kohler, and J. Wagner, IEEE Photon. Technol. Lett. 19, 1741 (2007).
[CrossRef]

J.-M. Hopkins, A. J. Maclean, D. Burns, E. Riis, N. Schulz, M. Rattunde, C. Manz, K. Kohler, and J. Wagner, Opt. Express 15, 8212 (2007).
[CrossRef] [PubMed]

2006

J. E. Hastie, L. G. Morton, A. J. Kemp, M. D. Dawson, A. B. Krysa, and J. S. Roberts, Appl. Phys. Lett. 89, 061114 (2006).
[CrossRef]

N. Schulz, M. Rattunde, C. Manz, K. Kohler, J. Wagner, S. S. Beyertt, U. Brauch, T. Kubler, and A. Giesen, IEEE Photon. Technol. Lett. 18, 1070 (2006).
[CrossRef]

A. Harkonen, M. Guina, O. Okhotnikov, K. Rossner, M. Hummer, T. Lehnhardt, M. Muller, A. Forchel, and M. Fischer, Opt. Express 14, 6479 (2006).
[CrossRef] [PubMed]

F. van Loon, A. J. Kemp, A. J. Maclean, S. Calvez, J. M. Hopkins, J. E. Hastie, M. D. Dawson, and D. Burns, Opt. Express 14, 9250 (2006).
[CrossRef] [PubMed]

R. Kaspi, A. P. Ongstad, G. C. Dente, J. R. Chavez, M. L. Tilton, and D. M. Gianardi, Appl. Phys. Lett. 88, 041122 (2006).
[CrossRef]

2004

J.-M. Hopkins, S. A. Smith, C. W. Jeon, H. D. Sun, D. Burns, S. Calvez, M. D. Dawson, T. Jouhti, and M. Pessa, Electron. Lett. 40, 30 (2004).
[CrossRef]

L. Cerutti, A. Garnache, A. Ouvrard, and F. Genty, J. Cryst. Growth 268, 128 (2004).
[CrossRef]

2000

Z. L. Liau, Appl. Phys. Lett. 77, 651 (2000).
[CrossRef]

1999

D. Z. Garbuzov, H. Lee, V. Khalfin, R. Martinelli, J. C. Connolly, and G. L. Belenky, IEEE Photon. Technol. Lett. 11, 794 (1999).
[CrossRef]

1997

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, IEEE Photon. Technol. Lett. 9, 1063 (1997).
[CrossRef]

1989

S. W. Corzine, R. S. Geels, J. W. Scott, R. H. Yan, and L. A. Coldren, IEEE J. Quantum Electron. 25, 1513 (1989).
[CrossRef]

Appl. Phys. Lett.

R. Kaspi, A. P. Ongstad, G. C. Dente, J. R. Chavez, M. L. Tilton, and D. M. Gianardi, Appl. Phys. Lett. 88, 041122 (2006).
[CrossRef]

J. E. Hastie, L. G. Morton, A. J. Kemp, M. D. Dawson, A. B. Krysa, and J. S. Roberts, Appl. Phys. Lett. 89, 061114 (2006).
[CrossRef]

Z. L. Liau, Appl. Phys. Lett. 77, 651 (2000).
[CrossRef]

Electron. Lett.

J.-M. Hopkins, S. A. Smith, C. W. Jeon, H. D. Sun, D. Burns, S. Calvez, M. D. Dawson, T. Jouhti, and M. Pessa, Electron. Lett. 40, 30 (2004).
[CrossRef]

IEEE J. Quantum Electron.

A. J. Kemp, J.-M. Hopkins, A. J. Maclean, N. Schulz, M. Rattunde, J. Wagner, and D. Burns, IEEE J. Quantum Electron. 44, 125 (2008).
[CrossRef]

S. W. Corzine, R. S. Geels, J. W. Scott, R. H. Yan, and L. A. Coldren, IEEE J. Quantum Electron. 25, 1513 (1989).
[CrossRef]

IEEE Photon. Technol. Lett.

N. Schulz, M. Rattunde, B. Ritzenthaler, C. Manz, K. Kohler, and J. Wagner, IEEE Photon. Technol. Lett. 19, 1741 (2007).
[CrossRef]

N. Schulz, M. Rattunde, C. Manz, K. Kohler, J. Wagner, S. S. Beyertt, U. Brauch, T. Kubler, and A. Giesen, IEEE Photon. Technol. Lett. 18, 1070 (2006).
[CrossRef]

M. Kuznetsov, F. Hakimi, R. Sprague, and A. Mooradian, IEEE Photon. Technol. Lett. 9, 1063 (1997).
[CrossRef]

D. Z. Garbuzov, H. Lee, V. Khalfin, R. Martinelli, J. C. Connolly, and G. L. Belenky, IEEE Photon. Technol. Lett. 11, 794 (1999).
[CrossRef]

J. Cryst. Growth

L. Cerutti, A. Garnache, A. Ouvrard, and F. Genty, J. Cryst. Growth 268, 128 (2004).
[CrossRef]

Opt. Express

Proc. SPIE

M. Rattunde, N. Schulz, B. Ritzenthaler, B. Rosener, C. Manz, K. Kohler, J. Worner, and J. Wagner, Proc. SPIE 6479, 647915 (2007).
[CrossRef]

Other

M. Rattunde, J. Schmitz, C. Mermelstein, R. Kiefer, and J. Wagner, in Mid-Infrared Semiconductor Optoelectronics, A.Krier, ed., Vol. 118 of Springer Series in Optical Science (Springer, 2006), pp. 131-157.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Reflectance and edge photoluminescence measurements of the SDL wafer with increasing mount temperature; 20 ° C (solid), 40 ° C (dashed), and 60 ° C (dotted).

Fig. 2
Fig. 2

Schematic of the three-mirror laser cavity typically used for sample assessment. HS, heat spreader; MM, multimode.

Fig. 3
Fig. 3

Power transfer characteristic (output versus pump power incident at the active region) of the SDL for the R = 91 % (diamonds), R = 85.5 % (triangles), and R = 80.5 % (circles) output coupling mirrors at 15 ° C (filled), 10 ° C (open), and 15 ° C with reflection lost pump retroreflected (open dotted diamonds).

Fig. 4
Fig. 4

Tuning spectra of the OP-SDL with an angle tuned, 2 mm quartz BRF plate, with a 15 ° C mount temperature. Inset, instantaneous, free-running spectra of the OP-SDL for 3.2 W at 15 ° C , showing the Fabry–Perot etalon modes imposed by the intracavity diamond heat spreader.

Metrics