Abstract

Vectorial fields with position-independent stochastic behavior within a certain region are analyzed. More specifically, we deal with the transverse components of this class of beamlike fields (the longitudinal component assumed to be negligible). The general form of the cross-spectral density tensor (CDT) of these fields is shown. Attention is also focused on the properties of these kinds of fields. Thus, among other characteristics, it is seen that the CDT of these fields can be written as the sum of two CDTs associated, respectively, to a totally polarized field and to an unpolarized field. It is also shown that, for such fields, a Young’s interference experiment can always be performed whose fringe visibility is optimized. This behavior has analytically been characterized by means of a certain parameter, valid for general beamlike fields. It is shown that, for the fields studied, this parameter reaches its maximum value.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (18)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription