Abstract

Vectorial fields with position-independent stochastic behavior within a certain region are analyzed. More specifically, we deal with the transverse components of this class of beamlike fields (the longitudinal component assumed to be negligible). The general form of the cross-spectral density tensor (CDT) of these fields is shown. Attention is also focused on the properties of these kinds of fields. Thus, among other characteristics, it is seen that the CDT of these fields can be written as the sum of two CDTs associated, respectively, to a totally polarized field and to an unpolarized field. It is also shown that, for such fields, a Young’s interference experiment can always be performed whose fringe visibility is optimized. This behavior has analytically been characterized by means of a certain parameter, valid for general beamlike fields. It is shown that, for the fields studied, this parameter reaches its maximum value.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. E. Wolf, Phys. Lett. A 312, 263 (2003).
    [CrossRef]
  2. J. Tervo, T. Setälä, and A. T. Friberg, Opt. Express 11, 1137 (2003).
    [CrossRef] [PubMed]
  3. M. Mujat and A. Dogariu, Opt. Lett. 28, 2153 (2003).
    [CrossRef] [PubMed]
  4. T. Setälä, J. Tervo, and A. T. Friberg, Opt. Lett. 29, 328 (2004).
    [CrossRef] [PubMed]
  5. Ph. Réfrégier and F. Goudail, Opt. Express 13, 6051 (2005).
    [CrossRef] [PubMed]
  6. F. Gori, M. Santarsiero, R. Borghi, and E. Wolf, Opt. Lett. 31, 688 (2006).
    [CrossRef] [PubMed]
  7. F. Gori, M. Santarsiero, and R. Borghi, Opt. Lett. 31, 858 (2006).
    [CrossRef] [PubMed]
  8. Ph. Réfrégier and A. Roueff, Opt. Lett. 31, 2827 (2006).
    [CrossRef] [PubMed]
  9. F. Gori, M. Santarsiero, and R. Borghi, Opt. Lett. 32, 588 (2007).
    [CrossRef] [PubMed]
  10. Ph. Réfrégier and A. Roueff, Opt. Photonics News 18, 30 (2007).
    [CrossRef]
  11. Ph. Réfrégier and A. Roueff, Opt. Lett. 32, 1366 (2007).
    [CrossRef] [PubMed]
  12. R. Martínez-Herrero and P. M. Mejías, Opt. Lett. 32, 1471 (2007).
    [CrossRef] [PubMed]
  13. R. Martínez-Herrero and P. M. Mejías, Opt. Lett. 32, 1504 (2007).
    [CrossRef] [PubMed]
  14. R. Martínez-Herrero and P. M. Mejías, Opt. Commun. 279, 20 (2007).
    [CrossRef]
  15. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, 1995).
  16. J. Perina, Coherence of Light (Van Nostrand Reinhold, 1971).
  17. C. Brosseau, Fundamentals of Polarized Light (Wiley, 1998).
  18. P. M. Mejías, R. Martínez-Herrero, G. Piquero, and J. M. Movilla, Prog. Quantum Electron. 26, 65 (2002).
    [CrossRef]

2007

2006

2005

2004

2003

2002

P. M. Mejías, R. Martínez-Herrero, G. Piquero, and J. M. Movilla, Prog. Quantum Electron. 26, 65 (2002).
[CrossRef]

Opt. Commun.

R. Martínez-Herrero and P. M. Mejías, Opt. Commun. 279, 20 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Photonics News

Ph. Réfrégier and A. Roueff, Opt. Photonics News 18, 30 (2007).
[CrossRef]

Phys. Lett. A

E. Wolf, Phys. Lett. A 312, 263 (2003).
[CrossRef]

Prog. Quantum Electron.

P. M. Mejías, R. Martínez-Herrero, G. Piquero, and J. M. Movilla, Prog. Quantum Electron. 26, 65 (2002).
[CrossRef]

Other

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge U. Press, 1995).

J. Perina, Coherence of Light (Van Nostrand Reinhold, 1971).

C. Brosseau, Fundamentals of Polarized Light (Wiley, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Equations (18)

Equations on this page are rendered with MathJax. Learn more.

W ( r 1 , r 2 ) = V * ( r 1 ) V ( r 2 ) = F * ( r 1 ) F ( r 2 ) ,
V ( r ) = α g ( r ) ,
W ̂ i j W ̂ ( r 1 , r 2 ) = E + ( r i ) E ( r j ) , i , j = 1 , 2 ,
E ( r ) = E 0 f ( r ) U ̂ ( r ) ,
M ̂ ( r ) M ̂ + ( r ) = M ̂ + ( r ) M ̂ ( r ) = f ( r ) 2 I ̂ ,
W ̂ ( r 1 , r 2 ) = M ̂ + ( r 1 ) ϕ ̂ M ̂ ( r 2 ) ,
ϕ ̂ = E 0 + E 0 = [ α 2 α * β α β * β 2 ] .
E ( r ) = E 0 H ̂ ( r ) ,
P 2 ( r ) = 1 4 Det ϕ ̂ ( tr ϕ ̂ ) 2 ,
ϕ ̂ = [ ϕ 11 ϕ 12 ϕ 12 * ϕ 22 ] = ϕ ̂ T P + ϕ ̂ N P ,
ϕ ̂ T P = [ a 11 a 12 a 12 * a 22 ]
a 11 = 1 2 ( ϕ 11 ϕ 22 ) + 1 2 ( tr ϕ ̂ ) 2 4 Det ϕ ̂ ,
a 12 = ϕ 12 ,
a 22 = 1 2 ( ϕ 22 ϕ 11 ) + 1 2 ( tr ϕ ̂ ) 2 4 Det ϕ ̂ ,
q = 1 2 ( ϕ 11 + ϕ 22 ) 1 2 ( tr ϕ ̂ ) 2 4 Det ϕ ̂ .
W ̂ ( r 1 , r 2 ) = M ̂ + ( r 1 ) ϕ ̂ T P M ̂ ( r 2 ) + M ̂ + ( r 1 ) ϕ ̂ N P M ̂ ( r 2 ) .
V = I max I min I max + I min = 2 f ( r 1 ) f ( r 2 ) f ( r 1 ) 2 + f ( r 2 ) 2 ,
g 12 = tr ( W ̂ 12 W ̂ 21 ) + 2 Det W ̂ 12 tr W ̂ 11 tr W ̂ 22 .

Metrics