Abstract

We propose a novel method that uses a femtosecond pulse with a tilted pulse front as a probe pulse to perform real-time measurement of temporal waveforms of a terahertz pulse. This method can operate on a single shot in principle. Real-time measurement of the terahertz pulse was achieved using the dynamic subtraction method with a synchronized high-speed complimentary metal-oxide semiconductor sensor. A time window of 2.6ps was achieved. This value agrees well with results that were calculated theoretically and measured by an interferometric inverted field autocorrelator.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. D. Grischowsky, S. Keiding, M. van Exter, and Ch. Fattinger, J. Opt. Soc. Am. B 7, 2006 (1990).
    [CrossRef]
  2. B. B. Hu and M. C. Nuss, Opt. Lett. 20, 1716 (1995).
    [CrossRef] [PubMed]
  3. M. Usami, T. Iwamoto, R. Fukasawa, M. Tani, M. Watanabe, and K. Sakai, Phys. Med. Biol. 47, 3749 (2002).
    [CrossRef] [PubMed]
  4. Z. Jiang and X.-C. Zhang, Appl. Phys. Lett. 72, 1945 (1998).
    [CrossRef]
  5. Z. Jiang, F. G. Sun, and X.-C Zhang, Opt. Lett. 24, 1245 (1999).
    [CrossRef]
  6. J. Shan, A. S. Weling, E. Knoesel, L. Bartels, M. Bonn, A. Nahata, G. A. Reider, and T. F. Heinz, Opt. Lett. 25, 426 (2000).
    [CrossRef]
  7. S. P. Jamison, J. Shen, A. M. MacLeod, W. A. Gillespie, and D. A. Jaroszynski, Opt. Lett. 28, 1710 (2003).
    [CrossRef] [PubMed]
  8. Zs. Bor and B. Racz, Opt. Commun. 54, 165 (1985).
    [CrossRef]
  9. A. Nahata, A. S. Weling, and T. F. Heinz, Appl. Phys. Lett. 69, 2321 (1996).
    [CrossRef]
  10. Q. Wu, T. D. Hewitt, and X.-C. Zhang, Appl. Phys. Lett. 69, 1026 (1996).
    [CrossRef]
  11. T. Yasuda, T. Yasui, T. Araki, and E. Abraham, Opt. Commun. 267, 128 (2006).
    [CrossRef]
  12. Z. Jiang, X. G. Xu, and X.-C. Zhang, Appl. Opt. 39, 2982 (2000).
    [CrossRef]
  13. F. Miyamaru, T. Yonera, M. Tani, and M. Hangyo, Jpn. J. Appl. Phys., Part 1 43, L489 (2004).
    [CrossRef]
  14. G. Pretzler, A. Kasper, and K. J. Witte, Appl. Phys. B 70, 1 (2000).
    [CrossRef]
  15. A. E. Kaplan, J. Opt. Soc. Am. B 15, 951 (1998).
    [CrossRef]

2006 (1)

T. Yasuda, T. Yasui, T. Araki, and E. Abraham, Opt. Commun. 267, 128 (2006).
[CrossRef]

2004 (1)

F. Miyamaru, T. Yonera, M. Tani, and M. Hangyo, Jpn. J. Appl. Phys., Part 1 43, L489 (2004).
[CrossRef]

2003 (1)

2002 (1)

M. Usami, T. Iwamoto, R. Fukasawa, M. Tani, M. Watanabe, and K. Sakai, Phys. Med. Biol. 47, 3749 (2002).
[CrossRef] [PubMed]

2000 (3)

1999 (1)

1998 (2)

A. E. Kaplan, J. Opt. Soc. Am. B 15, 951 (1998).
[CrossRef]

Z. Jiang and X.-C. Zhang, Appl. Phys. Lett. 72, 1945 (1998).
[CrossRef]

1996 (2)

A. Nahata, A. S. Weling, and T. F. Heinz, Appl. Phys. Lett. 69, 2321 (1996).
[CrossRef]

Q. Wu, T. D. Hewitt, and X.-C. Zhang, Appl. Phys. Lett. 69, 1026 (1996).
[CrossRef]

1995 (1)

1990 (1)

1985 (1)

Zs. Bor and B. Racz, Opt. Commun. 54, 165 (1985).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (1)

G. Pretzler, A. Kasper, and K. J. Witte, Appl. Phys. B 70, 1 (2000).
[CrossRef]

Appl. Phys. Lett. (3)

Z. Jiang and X.-C. Zhang, Appl. Phys. Lett. 72, 1945 (1998).
[CrossRef]

A. Nahata, A. S. Weling, and T. F. Heinz, Appl. Phys. Lett. 69, 2321 (1996).
[CrossRef]

Q. Wu, T. D. Hewitt, and X.-C. Zhang, Appl. Phys. Lett. 69, 1026 (1996).
[CrossRef]

J. Opt. Soc. Am. B (2)

Jpn. J. Appl. Phys., Part 1 (1)

F. Miyamaru, T. Yonera, M. Tani, and M. Hangyo, Jpn. J. Appl. Phys., Part 1 43, L489 (2004).
[CrossRef]

Opt. Commun. (2)

T. Yasuda, T. Yasui, T. Araki, and E. Abraham, Opt. Commun. 267, 128 (2006).
[CrossRef]

Zs. Bor and B. Racz, Opt. Commun. 54, 165 (1985).
[CrossRef]

Opt. Lett. (4)

Phys. Med. Biol. (1)

M. Usami, T. Iwamoto, R. Fukasawa, M. Tani, M. Watanabe, and K. Sakai, Phys. Med. Biol. 47, 3749 (2002).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Principle of a single-shot measurement using pulse-front tilting.

Fig. 2
Fig. 2

Diagram of experimental setup. IVS, Intelligent vision system; BS, beam splitter.

Fig. 3
Fig. 3

Spatiotemporal THz image obtained in real time. A view field of this measurement is 9.2 × 9.2 mm . White and black areas correspond to positive and negative of electric fields. Stripes are the result of electric vibrations. Influence of the probe beam profile is observed.

Fig. 4
Fig. 4

Temporal waveforms of THz pulse. The solid curve represents a waveform measured using pulse-front tilting. The dotted curve represents a waveform measured by the conventional sampling method.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

tan γ = sin α apex cos ϕ 1 cos ϕ 2 λ d n d λ ,
T = σ tan γ c ,

Metrics