Abstract

A very general beam solution of the paraxial wave equation in circular cylindrical coordinates is presented. We call such a field a circular beam (CiB). The complex amplitude of the CiB is described by either the Whittaker functions or the confluent hypergeometric functions and is characterized by three parameters that are complex in the most general situation. The propagation through complex ABCD optical systems and the conditions for square integrability are studied in detail. Special cases of the CiB are the standard, elegant, and generalized Laguerre–Gauss beams; Bessel–Gauss beams; hypergeometric beams; hypergeometric–Gaussian beams; fractional-order elegant Laguerre–Gauss beams; quadratic Bessel–Gauss beams; and optical vortex beams.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. M. S. Soskin and M. Vasnetsov, Prog. Opt. 42, 219 (2001).
    [CrossRef]
  2. A. E. Siegman, Lasers (University Science, 1986).
  3. A. Wunsche, J. Opt. Soc. Am. A 6, 1320 (1989).
    [CrossRef]
  4. M. A. Bandres and J. C. Gutiérrez-Vega, Proc. SPIE 6290, 6290-0S (2006).
  5. F. Gori, G. Guattari, and C. Padovani, Opt. Commun. 64, 491 (1987).
    [CrossRef]
  6. J. C. Gutiérrez-Vega and M. A. Bandres, J. Opt. Soc. Am. A 22, 289 (2005).
    [CrossRef]
  7. V. V. Kotlyar, R. V. Skidanov, S. N. Khonina, and V. A. Soifer, Opt. Lett. 32, 742 (2007).
    [CrossRef] [PubMed]
  8. E. Karimi, G. Zito, B. Piccirillo, L. Marruci, and E. Santamato, Opt. Lett. 32, 3053 (2007).
    [CrossRef] [PubMed]
  9. V. V. Kotlyar and A. A. Kovalev, J. Opt. Soc. Am. A 25, 262 (2008).
    [CrossRef]
  10. J. C. Gutiérrez-Vega, Opt. Express 15, 6300 (2007).
    [CrossRef] [PubMed]
  11. C. F. R. Caron and R. M. Potvliege, Opt. Commun. 164, 83 (1999).
    [CrossRef]
  12. M. V. Berry, J. Opt. A, Pure Appl. Opt. 6, 259 (2004).
    [CrossRef]
  13. C. P. Boyer, E. G. Kalnins, and W. Miller, J. Math. Phys. 16, 499 (1975).
    [CrossRef]
  14. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, 1964).
  15. M. A. Porras, R. Borghi, and M. Santarsiero, J. Opt. Soc. Am. A 18, 177 (2001).
    [CrossRef]

2008

2007

2006

M. A. Bandres and J. C. Gutiérrez-Vega, Proc. SPIE 6290, 6290-0S (2006).

2005

2004

M. V. Berry, J. Opt. A, Pure Appl. Opt. 6, 259 (2004).
[CrossRef]

2001

1999

C. F. R. Caron and R. M. Potvliege, Opt. Commun. 164, 83 (1999).
[CrossRef]

1989

1987

F. Gori, G. Guattari, and C. Padovani, Opt. Commun. 64, 491 (1987).
[CrossRef]

1975

C. P. Boyer, E. G. Kalnins, and W. Miller, J. Math. Phys. 16, 499 (1975).
[CrossRef]

J. Math. Phys.

C. P. Boyer, E. G. Kalnins, and W. Miller, J. Math. Phys. 16, 499 (1975).
[CrossRef]

J. Opt. A, Pure Appl. Opt.

M. V. Berry, J. Opt. A, Pure Appl. Opt. 6, 259 (2004).
[CrossRef]

J. Opt. Soc. Am. A

Opt. Commun.

F. Gori, G. Guattari, and C. Padovani, Opt. Commun. 64, 491 (1987).
[CrossRef]

C. F. R. Caron and R. M. Potvliege, Opt. Commun. 164, 83 (1999).
[CrossRef]

Opt. Express

Opt. Lett.

Proc. SPIE

M. A. Bandres and J. C. Gutiérrez-Vega, Proc. SPIE 6290, 6290-0S (2006).

Prog. Opt.

M. S. Soskin and M. Vasnetsov, Prog. Opt. 42, 219 (2001).
[CrossRef]

Other

A. E. Siegman, Lasers (University Science, 1986).

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, 1964).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Tables (1)

Tables Icon

Table 1 Special Cases of CiB γ m ( r ; q 0 , q ̃ 0 )

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

( x 2 + y 2 + 2 i k z ) U ( r , z ) = 0 ,
GB ( r , q ) = ( 1 + z q 0 ) 1 exp [ i k r 2 2 q ( z ) ] ,
[ ¯ 2 i ρ ¯ γ i ] F = 0 ,
z ( χ 2 q 2 ) = 1 k q 2 ,
z Z Z = ( i γ 1 ) 2 k χ 2 ,
1 χ 2 ( z ) = k ( 1 q ̃ 1 q ) ,
[ ϱ ϱ 1 4 + i γ 2 ϱ + 1 4 ( m 2 ) 2 ϱ 2 ] G ( ϱ ) = 0 .
CiB γ m ( r ; q , q ̃ ) = ( q ̃ q ̃ 0 q q 0 ) i γ 2 ( i r 2 2 χ 2 ) 1 2 M i γ 2 , m 2 ( i r 2 2 χ 2 ) × [ GB ( r , q ) GB ( r , q ̃ ) ] 1 2 exp ( i m θ ) .
CiB γ m ( r ; q , q ̃ ) = ( q ̃ q ̃ 0 q q 0 ) i γ 2 1 2 ( i r 2 2 χ 2 ) m 2 × F 1 1 ( 1 + m i γ 2 , 1 + m , i r 2 2 χ 2 ) GB ( r , q ) exp ( i m θ ) .
Ψ 0 ( r 0 ; q 0 , q ̃ 0 ) = ( i r 0 2 2 χ 0 2 ) m 2 exp ( i m θ ) exp ( i k r 0 2 2 q 0 ) × F 1 1 ( 1 + m i γ 2 , 1 + m , i r 0 2 2 χ 0 2 ) .
Ψ 1 ( r 1 ; q 1 , q ̃ 1 ) = ( i ) m + 1 k B 0 d r 0 Ψ 0 ( r 0 ; q 0 , q ̃ 0 ) × r 0 J m ( k r 0 r 1 B ) exp [ i k 2 B ( A r 0 2 + D r 1 2 ) ] ,
Ψ 1 ( r 1 ; q 1 , q ̃ 1 ) = ( A + B q ̃ 0 A + B q 0 ) i γ 2 1 2 ( i r 1 2 2 χ 1 2 ) m 2 × F 1 1 ( m + 1 i γ 2 , m + 1 ; i r 1 2 2 χ 1 2 ) × GB ( r 1 , q 1 ) exp ( i m θ ) ,
GB ( r 1 , q 1 ) = ( A + B q 0 ) 1 exp ( i k r 1 2 2 q 1 )
q 1 = A q 0 + B C q 0 + D , q ̃ 1 = A q ̃ 0 + B C q ̃ 0 + D .
χ 1 2 = χ 0 2 ( A + B q 0 ) ( A + B q ̃ 0 ) ,
χ 1 2 = ( A + B q 0 ) 2 { χ 0 2 + [ ( B k ) ( A + B q 0 ) ] } .
WGB γ m ( r ) = [ ( i r 2 2 W 0 2 ) 1 2 M i γ 2 , m 2 ( i r 2 2 W 0 2 ) ] × exp ( r 2 w 0 2 ) exp ( i m θ ) ,

Metrics