Abstract

We have demonstrated the operation of a frontside-illuminated GaAsAlGaAs quantum-well photodetector based on intersubband absorption in a quantum well (QW) with a targeted peak frequency of 3THz. A multiple-quantum-well structure consists of 20 periods of 18nm QWs interleaved by 80nm barriers with an Al alloy content of 2%. We measured the following performance characteristics: dark current, responsivity, and spectral response. A responsivity of 13mAW at an electric bias of 40mV and an operating temperature of 3K was obtained with a peak response close to the designed detection frequency. The dark current density was a few μAcm2 and was limited by thermally assisted tunneling through the barriers. We looked also at possible designs to optimize the device’s performance.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, Opt. Express 13, 3331 (2005).
    [CrossRef] [PubMed]
  2. H. C. Liu, C. Y. Song, A. J. Spring-Thorpe, and J. C. Cao, Appl. Phys. Lett. 84, 4068 (2004).
    [CrossRef]
  3. H. Luo, H. C. Liu, C. Y. Song, and Z. R. Wasilewski, Appl. Phys. Lett. 86, 231103 (2005).
    [CrossRef]
  4. B. D. Jackson, G. de Lange, T. Zijlstra, M. Kroug, J. W. Kooi, J. A. Stern, and T. M. Klapwijk, IEEE Trans. Microwave Theory Tech. 54, 547 (2006).
    [CrossRef]
  5. J. J. A. Baselmans, M. Hajenius, J. R. Gao, A. Baryshev, J. Kooi, T. M. Klapwijk, B. Voronov, P. de Korte, and G. Gol'tsman, IEEE Trans. Appl. Supercond. 15, 484 (2006).
    [CrossRef]
  6. M. Fujiwara, T. Hirao, M. Kawada, H. Shibai, S. Matsuura, H. Kaneda, M. Patrashin, and T. Nakagawa, Appl. Opt. 42, 2166 (2003).
    [CrossRef] [PubMed]
  7. S. D. Gunapala, S. V. Bandara, J. K. Liu, C. J. Hill, S. B. Rafol, J. M. Mumolo, J. T. Trinh, M. Z. Tidrow, and P. D. LeVan, Proc. SPIE 5783, 789 (2005).
    [CrossRef]
  8. W. J. Li and B. D. McCombe, J. Appl. Phys. 71, 1038 (1992).
    [CrossRef]
  9. B. F. Levine, J. Appl. Phys. 74, R1 (1993).
    [CrossRef]
  10. C. Priester, G. Allan, and M. Lannoo, Phys. Rev. B 29, 3408 (1984).
    [CrossRef]
  11. M. Carras, V. Berger, X. Marcadet, and B. Vinter, Phys. Rev. B 70, 233310 (2004).
    [CrossRef]
  12. M. Helm, W. Hilber, and T. Fromherz, Phys. Rev. B 48, 1601 (1993).
    [CrossRef]

2006 (2)

B. D. Jackson, G. de Lange, T. Zijlstra, M. Kroug, J. W. Kooi, J. A. Stern, and T. M. Klapwijk, IEEE Trans. Microwave Theory Tech. 54, 547 (2006).
[CrossRef]

J. J. A. Baselmans, M. Hajenius, J. R. Gao, A. Baryshev, J. Kooi, T. M. Klapwijk, B. Voronov, P. de Korte, and G. Gol'tsman, IEEE Trans. Appl. Supercond. 15, 484 (2006).
[CrossRef]

2005 (3)

B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, Opt. Express 13, 3331 (2005).
[CrossRef] [PubMed]

S. D. Gunapala, S. V. Bandara, J. K. Liu, C. J. Hill, S. B. Rafol, J. M. Mumolo, J. T. Trinh, M. Z. Tidrow, and P. D. LeVan, Proc. SPIE 5783, 789 (2005).
[CrossRef]

H. Luo, H. C. Liu, C. Y. Song, and Z. R. Wasilewski, Appl. Phys. Lett. 86, 231103 (2005).
[CrossRef]

2004 (2)

M. Carras, V. Berger, X. Marcadet, and B. Vinter, Phys. Rev. B 70, 233310 (2004).
[CrossRef]

H. C. Liu, C. Y. Song, A. J. Spring-Thorpe, and J. C. Cao, Appl. Phys. Lett. 84, 4068 (2004).
[CrossRef]

2003 (1)

1993 (2)

B. F. Levine, J. Appl. Phys. 74, R1 (1993).
[CrossRef]

M. Helm, W. Hilber, and T. Fromherz, Phys. Rev. B 48, 1601 (1993).
[CrossRef]

1992 (1)

W. J. Li and B. D. McCombe, J. Appl. Phys. 71, 1038 (1992).
[CrossRef]

1984 (1)

C. Priester, G. Allan, and M. Lannoo, Phys. Rev. B 29, 3408 (1984).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

H. C. Liu, C. Y. Song, A. J. Spring-Thorpe, and J. C. Cao, Appl. Phys. Lett. 84, 4068 (2004).
[CrossRef]

H. Luo, H. C. Liu, C. Y. Song, and Z. R. Wasilewski, Appl. Phys. Lett. 86, 231103 (2005).
[CrossRef]

IEEE Trans. Appl. Supercond. (1)

J. J. A. Baselmans, M. Hajenius, J. R. Gao, A. Baryshev, J. Kooi, T. M. Klapwijk, B. Voronov, P. de Korte, and G. Gol'tsman, IEEE Trans. Appl. Supercond. 15, 484 (2006).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

B. D. Jackson, G. de Lange, T. Zijlstra, M. Kroug, J. W. Kooi, J. A. Stern, and T. M. Klapwijk, IEEE Trans. Microwave Theory Tech. 54, 547 (2006).
[CrossRef]

J. Appl. Phys. (2)

W. J. Li and B. D. McCombe, J. Appl. Phys. 71, 1038 (1992).
[CrossRef]

B. F. Levine, J. Appl. Phys. 74, R1 (1993).
[CrossRef]

Opt. Express (1)

Phys. Rev. B (3)

C. Priester, G. Allan, and M. Lannoo, Phys. Rev. B 29, 3408 (1984).
[CrossRef]

M. Carras, V. Berger, X. Marcadet, and B. Vinter, Phys. Rev. B 70, 233310 (2004).
[CrossRef]

M. Helm, W. Hilber, and T. Fromherz, Phys. Rev. B 48, 1601 (1993).
[CrossRef]

Proc. SPIE (1)

S. D. Gunapala, S. V. Bandara, J. K. Liu, C. J. Hill, S. B. Rafol, J. M. Mumolo, J. T. Trinh, M. Z. Tidrow, and P. D. LeVan, Proc. SPIE 5783, 789 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Band diagram of the QW structure with an intersubband resonance frequency of 3 THz (wavelength 100 μ m ). The structure consists of an 18 nm GaAs QW and AlGaAs barriers with an Al alloy fraction of 2%.

Fig. 2
Fig. 2

Bias and temperature dependence of dark current. The device observed stable operation between ± 60 mV with nearly symmetrical current–voltage characteristics.

Fig. 3
Fig. 3

Temperature dependence of the dark current at ± 40 mV bias voltages. The solid line represents a fit by the standard model of the thermionic component J D T exp ( Δ E a k T ) with Δ E a = 10.5 meV . Below 6 K the current flattens out at around 1 μ A cm 2 and is limited by thermally assisted tunneling through the barriers.

Fig. 4
Fig. 4

Normalized spectrum of detector’s photoresponse (solid curve) compared with the results of numerical simulations. The observed response is close to the designed detection frequency. The model assumed a set of identical wells, a constant 2% Al content in the barriers, and a uniform electric field. Broadening of the spectrum due to bound-to-continuum transitions was not considered in the calculations.

Metrics