Abstract

We report on high-accuracy angle-resolved optical transmission measurements through anisotropic 2D plasmonic crystals made of gold films with large-area rectangular arrays of nanoscale square holes, deposited on GaAs substrates. The measurements reveal the dispersion relations of air–gold and gold–GaAs surface plasmon polaritons. The crystal anisotropy induces a separation between plasmonic modes propagating in different directions. Their symmetry and dispersion properties are discussed.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Appl. Phys. B 391, 667 (1998).
  2. W. L. Barnes, A. Dereux, and T. W. Ebbesen, Appl. Phys. B 424, 824 (2003).
  3. C. Genet and T. W. Ebbesen, Appl. Phys. B 445, 39 (2007).
  4. S. C. Kitson, W. L. Barnes, and J. R. Sambles, Phys. Rev. Lett. 77, 2670 (1996).
    [CrossRef] [PubMed]
  5. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, Phys. Rev. B 58, 6779 (1998).
    [CrossRef]
  6. W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, Phys. Rev. Lett. 92, 107401 (2004).
    [CrossRef] [PubMed]
  7. M.-W. Tsai, T.-H. Chuang, H.-Y. Chang, and S.-C. Lee, Appl. Phys. Lett. 88, 213112 (2006).
    [CrossRef]
  8. P. Lalanne, J. C. Rodier, and J. P. Hugonin, J. Opt. A, Pure Appl. Opt. 7, 422 (2005).
    [CrossRef]
  9. A. Hessel and A. A. Oliner, Appl. Opt. 4, 1275 (1965).
    [CrossRef]
  10. S. Collin, F. Pardo, R. Teissier, and J.-L. Pelouard, J. Opt. A, Pure Appl. Opt. 4, S154 (2002).
    [CrossRef]
  11. C. Genet, M. van Exter, and J. Woerdman, Opt. Commun. 225, 331 (2003).
    [CrossRef]
  12. P. Lalanne, C. Sauvan, J. P. Hugonin, J. C. Rodier, and P. Chavel, Phys. Rev. B 68, 125404 (2003).
    [CrossRef]
  13. K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, Phys. Rev. Lett. 92, 183901 (2004).
    [CrossRef]
  14. K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, N. F. van Hulst, and L. Kuipers, Phys. Rev. B 72, 045421 (2005).
    [CrossRef]
  15. R. A. Depine and S. Ledesma, Opt. Lett. 29, 2216 (2004).
    [CrossRef] [PubMed]

2007 (1)

C. Genet and T. W. Ebbesen, Appl. Phys. B 445, 39 (2007).

2006 (1)

M.-W. Tsai, T.-H. Chuang, H.-Y. Chang, and S.-C. Lee, Appl. Phys. Lett. 88, 213112 (2006).
[CrossRef]

2005 (2)

P. Lalanne, J. C. Rodier, and J. P. Hugonin, J. Opt. A, Pure Appl. Opt. 7, 422 (2005).
[CrossRef]

K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, N. F. van Hulst, and L. Kuipers, Phys. Rev. B 72, 045421 (2005).
[CrossRef]

2004 (3)

K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, Phys. Rev. Lett. 92, 183901 (2004).
[CrossRef]

R. A. Depine and S. Ledesma, Opt. Lett. 29, 2216 (2004).
[CrossRef] [PubMed]

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, Phys. Rev. Lett. 92, 107401 (2004).
[CrossRef] [PubMed]

2003 (3)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, Appl. Phys. B 424, 824 (2003).

C. Genet, M. van Exter, and J. Woerdman, Opt. Commun. 225, 331 (2003).
[CrossRef]

P. Lalanne, C. Sauvan, J. P. Hugonin, J. C. Rodier, and P. Chavel, Phys. Rev. B 68, 125404 (2003).
[CrossRef]

2002 (1)

S. Collin, F. Pardo, R. Teissier, and J.-L. Pelouard, J. Opt. A, Pure Appl. Opt. 4, S154 (2002).
[CrossRef]

1998 (2)

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, Phys. Rev. B 58, 6779 (1998).
[CrossRef]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Appl. Phys. B 391, 667 (1998).

1996 (1)

S. C. Kitson, W. L. Barnes, and J. R. Sambles, Phys. Rev. Lett. 77, 2670 (1996).
[CrossRef] [PubMed]

1965 (1)

Appl. Opt. (1)

Appl. Phys. B (3)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Appl. Phys. B 391, 667 (1998).

W. L. Barnes, A. Dereux, and T. W. Ebbesen, Appl. Phys. B 424, 824 (2003).

C. Genet and T. W. Ebbesen, Appl. Phys. B 445, 39 (2007).

Appl. Phys. Lett. (1)

M.-W. Tsai, T.-H. Chuang, H.-Y. Chang, and S.-C. Lee, Appl. Phys. Lett. 88, 213112 (2006).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (2)

P. Lalanne, J. C. Rodier, and J. P. Hugonin, J. Opt. A, Pure Appl. Opt. 7, 422 (2005).
[CrossRef]

S. Collin, F. Pardo, R. Teissier, and J.-L. Pelouard, J. Opt. A, Pure Appl. Opt. 4, S154 (2002).
[CrossRef]

Opt. Commun. (1)

C. Genet, M. van Exter, and J. Woerdman, Opt. Commun. 225, 331 (2003).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. B (3)

K. L. van der Molen, K. J. Klein Koerkamp, S. Enoch, N. F. van Hulst, and L. Kuipers, Phys. Rev. B 72, 045421 (2005).
[CrossRef]

P. Lalanne, C. Sauvan, J. P. Hugonin, J. C. Rodier, and P. Chavel, Phys. Rev. B 68, 125404 (2003).
[CrossRef]

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, Phys. Rev. B 58, 6779 (1998).
[CrossRef]

Phys. Rev. Lett. (3)

W. L. Barnes, W. A. Murray, J. Dintinger, E. Devaux, and T. W. Ebbesen, Phys. Rev. Lett. 92, 107401 (2004).
[CrossRef] [PubMed]

S. C. Kitson, W. L. Barnes, and J. R. Sambles, Phys. Rev. Lett. 77, 2670 (1996).
[CrossRef] [PubMed]

K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. van Hulst, and L. Kuipers, Phys. Rev. Lett. 92, 183901 (2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a) Schematic view of an anisotropic plasmonic crystal made of a gold film deposited on a GaAs substrate, with a rectangular array of nanoscale square holes. (b) Scanning electron microscope image of the sample (detail), and geometrical parameters.

Fig. 2
Fig. 2

Schematic drawing of the setup for angle-resolved transmission and reflection optical measurements: A, FTIR spectrometer; B, achromatic optical focusing system; C, sample and detector rotation stages.

Fig. 3
Fig. 3

Angle-resolved transmission measurements through a rectangular array of square holes in a gold film deposited on a GaAs substrate (hole width w = 450 nm , periods d x = 1 μ m and d y = 1.25 μ m , gold thickness h = 250 nm ). The transmission intensity is plotted on a gray-level log scale as a function of the wavenumber σ = 1 λ and the in-plane wave vector of polarized incident light: (a), (b) k y = k 0 sin θ with k x = 0 . (c), (d) k x = k 0 sin θ with k y = 0 . The incident light polarization and wave vector are shown in the upper insets (red arrows within grids). (e) Schematic drawing of the plasmonic dispersion curves in an anisotropic plasmonic crystal. Solid curves (dashed curves) represent dispersion curves excited with p-polarized (s-polarized) incident plane waves in (a), (b), (c), and (d).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

( k x + p K x ) 2 + ( k y + q K y ) 2 = k spp 2 ,
H p 1 = H 0 exp ( i k x x ) [ i α sin ( K y y ) u x + β cos ( K y y ) u y ] ,
H p 2 = H 0 exp ( i k x x ) [ α cos ( K y y ) u x + i β sin ( K y y ) u y ] ,

Metrics