Abstract

Modulation of light by ultrasound in turbid media is investigated by modified public domain software based on the Monte Carlo algorithm. Apart from the recognized modulation mechanisms, originating in scatterers’ displacements and refractive index modulation, an additional mechanism, evolving from Doppler shift during photon scattering, is considered. Comparison of the relative contributions from all three mechanisms to light modulation by ultrasound is performed for different medium scattering properties and ultrasound frequencies. Refractive index modulation remains the strongest mechanism for light modulation by ultrasound, but for high ultrasound frequencies and for large scattering coefficients the Doppler effect can become dominant.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. R. Zemp, S. Sakadziç, and L. V. Wang, Phys. Rev. E 73, 061920 (2006).
    [CrossRef]
  2. A. Lev and B. G. Sfez, Opt. Lett. 28, 1549 (2003).
    [CrossRef] [PubMed]
  3. B.-C. Forget, F. Ramaz, M. Atlan, J. Selb, and A.-C. Boccara, Appl. Opt. 42, 1379 (2003).
    [CrossRef] [PubMed]
  4. G. D. Mahan, W. E. Engler, J. J. Tiemann, and E. Uzgiris, Proc. Natl. Acad. Sci. U.S.A. 95, 14015 (1998).
    [CrossRef] [PubMed]
  5. L. V. Wang, Phys. Rev. Lett. 87, 043903 (2001).
    [CrossRef] [PubMed]
  6. L. V. Wang, Opt. Lett. 26, 1191 (2001).
    [CrossRef]
  7. A. Yariv, Optical Electronics in Modern Communications, 5th ed. (Oxford U. Press, 1997), Chap. 12, p. 482.
  8. Software available at http://oilab.tamu.edu./mc.html
  9. L.-H. Wang, S. L. Jacques, and L.-Q. Zheng, Comput. Methods Programs Biomed. 47, 131 (1995).
    [CrossRef] [PubMed]

2006 (1)

R. Zemp, S. Sakadziç, and L. V. Wang, Phys. Rev. E 73, 061920 (2006).
[CrossRef]

2003 (2)

2001 (2)

L. V. Wang, Opt. Lett. 26, 1191 (2001).
[CrossRef]

L. V. Wang, Phys. Rev. Lett. 87, 043903 (2001).
[CrossRef] [PubMed]

1998 (1)

G. D. Mahan, W. E. Engler, J. J. Tiemann, and E. Uzgiris, Proc. Natl. Acad. Sci. U.S.A. 95, 14015 (1998).
[CrossRef] [PubMed]

1995 (1)

L.-H. Wang, S. L. Jacques, and L.-Q. Zheng, Comput. Methods Programs Biomed. 47, 131 (1995).
[CrossRef] [PubMed]

Appl. Opt. (1)

Comput. Methods Programs Biomed. (1)

L.-H. Wang, S. L. Jacques, and L.-Q. Zheng, Comput. Methods Programs Biomed. 47, 131 (1995).
[CrossRef] [PubMed]

Opt. Lett. (2)

Phys. Rev. E (1)

R. Zemp, S. Sakadziç, and L. V. Wang, Phys. Rev. E 73, 061920 (2006).
[CrossRef]

Phys. Rev. Lett. (1)

L. V. Wang, Phys. Rev. Lett. 87, 043903 (2001).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

G. D. Mahan, W. E. Engler, J. J. Tiemann, and E. Uzgiris, Proc. Natl. Acad. Sci. U.S.A. 95, 14015 (1998).
[CrossRef] [PubMed]

Other (2)

A. Yariv, Optical Electronics in Modern Communications, 5th ed. (Oxford U. Press, 1997), Chap. 12, p. 482.

Software available at http://oilab.tamu.edu./mc.html

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Total modulation depth M t o t and separate contributions from all three mechanisms as a function of f a = 1 T a , or I a ; μ s = 10 cm 1 , A = 0.1 nm .

Fig. 2
Fig. 2

Ratio M Δ k ( M Δ n + M Δ l ) as a function of μ s for different values of f a , A, and P = ρ v a ω a A .

Fig. 3
Fig. 3

Total modulation depth M t o t and separate contributions from all three mechanisms at a constant ultrasound intensity of I a = 6.719 mW cm 2 as a function of f a ; μ s = 20 cm 1 .

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

x j ( t ) = x 0 , j + Δ x j ( t ) = x 0 , j + A sin ( ω a t + φ 0 , j ) ,
n ( x , t ) = n m + Δ n ( x , t ) = n m + ( Δ n ) 0 sin ( k a x ω a t ) .
k 0 , j ( t ) = k 0 , j 1 ( t ) [ c k ̂ 0 , j 1 v j ( t ) ] [ c k ̂ 0 , j v j ( t ) ] k 0 , j 1 ( t ) [ 1 + v j ( t ) c 1 ( k ̂ 0 , j v ̂ j k ̂ 0 , j 1 v ̂ j ) ] .
ϕ j t o t ( t ) = k 0 , j ( t ) x j ( t ) x j + 1 ( t ) n ( x , t ) d l j .
E s ( t ) E s * ( t + τ ) = exp [ i Δ ϕ s ( t , τ ) ] ,

Metrics