Abstract

It has been suggested that radially polarized beams can be used to improve the performance of optical tweezers, with reduced scattering force resulting from both the polarization and the dark center of the beam [Opt. Lett. 32, 1839 (2007) ]. We calculate the forces on particles in such traps, using rigorous electromagnetic theory, comparing the results with azimuthally polarized beam, circularly polarized LG01 beams, and Gaussian beams. Our results agree qualitatively with Opt. Lett. 32, 1839 (2007) , but differ quantitatively.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. A. Ashkin, Phys. Rev. Lett. 24, 156 (1970).
    [CrossRef]
  2. A. Ashkin, Biophys. J. 61, 569 (1992).
    [CrossRef] [PubMed]
  3. H. Kawauchi, K. Yonezawa, Y. Kozawa, and S. Sato, Opt. Lett. 32, 1839 (2007).
    [CrossRef] [PubMed]
  4. J. J. Stamnes, Waves in Focal Regions: Propagation, Diffraction, and Focusing of Light, Sound, and Water Waves (Hilger, 1986).
  5. P. C. Waterman, Phys. Rev. D 3, 825 (1971).
    [CrossRef]
  6. M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge U. Press, 2002).
  7. T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, Proc. SPIE 5514, 514 (2004).
    [CrossRef]
  8. T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Branczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, J. Opt. A, Pure Appl. Opt. 9, S196 (2007).
    [CrossRef]
  9. T. A. Nieminen, H. Rubinsztein-Dunlop, and N. R. Heckenberg, J. Quant. Spectrosc. Radiat. Transf. 79-80, 1005 (2003).
    [CrossRef]
  10. G. Knöner, S. Parkin, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, Phys. Rev. Lett. 97, 157402 (2006).
    [CrossRef] [PubMed]
  11. G. Knöner, A. Ratnapala, T. A. Nieminen, C. J. Vale, N. R. Heckenberg, and H. Rubinsztein-Dunlop, Lab Chip 6, 1545 (2006).
    [CrossRef]
  12. W. H. Wright, G. J. Sonek, and M. W. Berns, Appl. Phys. Lett. 63, 715 (1993).
    [CrossRef]
  13. G. Machavariani, Y. Lumer, I. Moshe, A. Meir, and S. Jackel, Opt. Lett. 32, 1468 (2007).
    [CrossRef] [PubMed]

2007 (3)

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Branczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, J. Opt. A, Pure Appl. Opt. 9, S196 (2007).
[CrossRef]

G. Machavariani, Y. Lumer, I. Moshe, A. Meir, and S. Jackel, Opt. Lett. 32, 1468 (2007).
[CrossRef] [PubMed]

H. Kawauchi, K. Yonezawa, Y. Kozawa, and S. Sato, Opt. Lett. 32, 1839 (2007).
[CrossRef] [PubMed]

2006 (2)

G. Knöner, S. Parkin, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, Phys. Rev. Lett. 97, 157402 (2006).
[CrossRef] [PubMed]

G. Knöner, A. Ratnapala, T. A. Nieminen, C. J. Vale, N. R. Heckenberg, and H. Rubinsztein-Dunlop, Lab Chip 6, 1545 (2006).
[CrossRef]

2004 (1)

T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, Proc. SPIE 5514, 514 (2004).
[CrossRef]

2003 (1)

T. A. Nieminen, H. Rubinsztein-Dunlop, and N. R. Heckenberg, J. Quant. Spectrosc. Radiat. Transf. 79-80, 1005 (2003).
[CrossRef]

1993 (1)

W. H. Wright, G. J. Sonek, and M. W. Berns, Appl. Phys. Lett. 63, 715 (1993).
[CrossRef]

1992 (1)

A. Ashkin, Biophys. J. 61, 569 (1992).
[CrossRef] [PubMed]

1971 (1)

P. C. Waterman, Phys. Rev. D 3, 825 (1971).
[CrossRef]

1970 (1)

A. Ashkin, Phys. Rev. Lett. 24, 156 (1970).
[CrossRef]

Appl. Phys. Lett. (1)

W. H. Wright, G. J. Sonek, and M. W. Berns, Appl. Phys. Lett. 63, 715 (1993).
[CrossRef]

Biophys. J. (1)

A. Ashkin, Biophys. J. 61, 569 (1992).
[CrossRef] [PubMed]

J. Opt. A, Pure Appl. Opt. (1)

T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Branczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, J. Opt. A, Pure Appl. Opt. 9, S196 (2007).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transf. (1)

T. A. Nieminen, H. Rubinsztein-Dunlop, and N. R. Heckenberg, J. Quant. Spectrosc. Radiat. Transf. 79-80, 1005 (2003).
[CrossRef]

Lab Chip (1)

G. Knöner, A. Ratnapala, T. A. Nieminen, C. J. Vale, N. R. Heckenberg, and H. Rubinsztein-Dunlop, Lab Chip 6, 1545 (2006).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. D (1)

P. C. Waterman, Phys. Rev. D 3, 825 (1971).
[CrossRef]

Phys. Rev. Lett. (2)

G. Knöner, S. Parkin, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, Phys. Rev. Lett. 97, 157402 (2006).
[CrossRef] [PubMed]

A. Ashkin, Phys. Rev. Lett. 24, 156 (1970).
[CrossRef]

Proc. SPIE (1)

T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, Proc. SPIE 5514, 514 (2004).
[CrossRef]

Other (2)

J. J. Stamnes, Waves in Focal Regions: Propagation, Diffraction, and Focusing of Light, Sound, and Water Waves (Hilger, 1986).

M. I. Mishchenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (Cambridge U. Press, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Force on sphere with refractive index of 1.59 and radius of 4 λ medium , trapped in water. The beams corresponding to the curves are Gaussian—black; radial—dashed red–dark; azimuthal—solid yellow–gray, LG 01 —dashed cyan–gray.

Fig. 2
Fig. 2

Force on sphere with refractive index of 1.59 and radius of 2 λ medium , trapped in water. The beams corresponding to the curves are Gaussian—black; radial—dashed red–dark; azimuthal—solid yellow–gray; LG 01 —dashed cyan–gray.

Fig. 3
Fig. 3

Force on sphere with relative refractive index of 2.4 and radius of 4 λ medium . The beams corresponding to the curves are Gaussian—black; radial-dashed red–dark; azimuthal—solid yellow–gray; LG 01 —dashed cyan–gray.

Fig. 4
Fig. 4

Dependence on maxium reverse restoring force on relative refractive index, for a sphere of radius of 4 λ medium . The beams corresponding to the curves are Gaussian—black; radial—dashed red–dark; azimuthal—solid yellow–gray; LG 01 —dashed cyan–gray.

Fig. 5
Fig. 5

Dependence on maxium reverse restoring force on numerical aperture, for a sphere with refractive index of 1.59 and radius of 4 λ medium , trapped in water. The beams corresponding to the curves are Gaussian—black; radial—dashed red–dark; azimuthal—solid yellow–gray; LG 01 —dashed cyan–gray.

Metrics