Abstract

This is a report on an effective simulation method for the bending loss analyses of photonic crystal fibers. This method is based on the two-dimensional finite-difference time-domain algorithm and a conformal transformation of the refractive index profile. We observed the temporal dynamics of light waves in a bent fiber in a simulation and obtained the bending loss as a function of bend radius and optical wavelength for the commercial photonic crystal fibers. The accuracy of this method was verified by good agreement between the simulation and experimental data.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. T. A. Birks, J. C. Knight, and P. St. J. Russell, Opt. Lett. 22, 961 (1997).
    [CrossRef] [PubMed]
  2. W. Belhadj, F. AbdelMalek, and H. Bouchriha, Mater. Sci. Eng. C 26, 578 (2006).
    [CrossRef]
  3. A. Taflove and S. C. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method (Artech House, 2005).
  4. J. C. Baggett, T. M. Monro, K. Furusawa, V. Finazzi, and D. J. Richardson, Opt. Commun. 227, 317 (2003).
    [CrossRef]
  5. Tanya M. Monro, D. J. Richardson, G. R. Broderick, and P. J. Bennett, J. Lightwave Technol. 17, 1093 (1999).
    [CrossRef]
  6. Y. Tsuchida, K. Saitoh, and M. Koshiba, Opt. Express 13, 4770 (2005).
    [CrossRef] [PubMed]
  7. M. D. Nielsen, N. A. Mortensen, M. Albertsen, A. Bjarklev, and D. Bonacinni, Opt. Express 12, 1775 (2004).
    [CrossRef] [PubMed]
  8. D. Marcuse, Appl. Opt. 21, 4208 (1982).
    [CrossRef] [PubMed]
  9. Q. Wang, G. Farrell, and T. Freir, Opt. Express 13, 4476 (2005).
    [CrossRef] [PubMed]
  10. M. Nielsen, J. Folkenberg, N. Mortensen, and A. Bjarklev, Opt. Express 12, 430 (2004).
    [CrossRef] [PubMed]
  11. J. M. Fini, Opt. Express 14, 69 (2006).
    [CrossRef] [PubMed]
  12. H. Kuniharu, M. Shoichiro, G. Ning, and W. Akira, J. Lightwave Technol. 11, 3494 (2005).

2006 (2)

W. Belhadj, F. AbdelMalek, and H. Bouchriha, Mater. Sci. Eng. C 26, 578 (2006).
[CrossRef]

J. M. Fini, Opt. Express 14, 69 (2006).
[CrossRef] [PubMed]

2005 (3)

2004 (2)

2003 (1)

J. C. Baggett, T. M. Monro, K. Furusawa, V. Finazzi, and D. J. Richardson, Opt. Commun. 227, 317 (2003).
[CrossRef]

1999 (1)

1997 (1)

1982 (1)

Appl. Opt. (1)

J. Lightwave Technol. (2)

Tanya M. Monro, D. J. Richardson, G. R. Broderick, and P. J. Bennett, J. Lightwave Technol. 17, 1093 (1999).
[CrossRef]

H. Kuniharu, M. Shoichiro, G. Ning, and W. Akira, J. Lightwave Technol. 11, 3494 (2005).

Mater. Sci. Eng. C (1)

W. Belhadj, F. AbdelMalek, and H. Bouchriha, Mater. Sci. Eng. C 26, 578 (2006).
[CrossRef]

Opt. Commun. (1)

J. C. Baggett, T. M. Monro, K. Furusawa, V. Finazzi, and D. J. Richardson, Opt. Commun. 227, 317 (2003).
[CrossRef]

Opt. Express (5)

Opt. Lett. (1)

Other (1)

A. Taflove and S. C. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method (Artech House, 2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Illustration of the simulation scheme: (a) infinitely-long bent fiber model; (b) one sliced piece of the bent fiber and its index profile along x; (c) same as (b) after conformal transformation of the index profile; (d) E 2 at the center of the fiber as a function of time, showing the attenuation of optical intensity.

Fig. 2
Fig. 2

(a) Optical intensity distribution in the cross section of a bent fiber with a radius of 5.5 mm (log scale) and (b) central regions of intensity profiles taken at successive times ( Δ t = 1 fs ) in one period of oscillation.

Fig. 3
Fig. 3

Dependence of bending loss on bending radius for (a) ESM-5 PCF and (b) LMA-8 PCF. The squares and triangles denote the experimental and simulation data, respectively.

Fig. 4
Fig. 4

Loss spectrum of ESM-5 PCF with different bend radii. Experimental and simulation data are shown by the solid and dashed curves, respectively.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

n eq 2 ( x , y ) = n 2 ( x , y ) ( 1 + 2 x R b ) ,

Metrics