Abstract

This is a report on an effective simulation method for the bending loss analyses of photonic crystal fibers. This method is based on the two-dimensional finite-difference time-domain algorithm and a conformal transformation of the refractive index profile. We observed the temporal dynamics of light waves in a bent fiber in a simulation and obtained the bending loss as a function of bend radius and optical wavelength for the commercial photonic crystal fibers. The accuracy of this method was verified by good agreement between the simulation and experimental data.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. T. A. Birks, J. C. Knight, and P. St. J. Russell, Opt. Lett. 22, 961 (1997).
    [CrossRef] [PubMed]
  2. W. Belhadj, F. AbdelMalek, and H. Bouchriha, Mater. Sci. Eng. C 26, 578 (2006).
    [CrossRef]
  3. A. Taflove and S. C. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method (Artech House, 2005).
  4. J. C. Baggett, T. M. Monro, K. Furusawa, V. Finazzi, and D. J. Richardson, Opt. Commun. 227, 317 (2003).
    [CrossRef]
  5. Tanya M. Monro, D. J. Richardson, G. R. Broderick, and P. J. Bennett, J. Lightwave Technol. 17, 1093 (1999).
    [CrossRef]
  6. Y. Tsuchida, K. Saitoh, and M. Koshiba, Opt. Express 13, 4770 (2005).
    [CrossRef] [PubMed]
  7. M. D. Nielsen, N. A. Mortensen, M. Albertsen, A. Bjarklev, and D. Bonacinni, Opt. Express 12, 1775 (2004).
    [CrossRef] [PubMed]
  8. D. Marcuse, Appl. Opt. 21, 4208 (1982).
    [CrossRef] [PubMed]
  9. Q. Wang, G. Farrell, and T. Freir, Opt. Express 13, 4476 (2005).
    [CrossRef] [PubMed]
  10. M. Nielsen, J. Folkenberg, N. Mortensen, and A. Bjarklev, Opt. Express 12, 430 (2004).
    [CrossRef] [PubMed]
  11. J. M. Fini, Opt. Express 14, 69 (2006).
    [CrossRef] [PubMed]
  12. H. Kuniharu, M. Shoichiro, G. Ning, and W. Akira, J. Lightwave Technol. 11, 3494 (2005).

2006

W. Belhadj, F. AbdelMalek, and H. Bouchriha, Mater. Sci. Eng. C 26, 578 (2006).
[CrossRef]

J. M. Fini, Opt. Express 14, 69 (2006).
[CrossRef] [PubMed]

2005

2004

2003

J. C. Baggett, T. M. Monro, K. Furusawa, V. Finazzi, and D. J. Richardson, Opt. Commun. 227, 317 (2003).
[CrossRef]

1999

1997

1982

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Illustration of the simulation scheme: (a) infinitely-long bent fiber model; (b) one sliced piece of the bent fiber and its index profile along x; (c) same as (b) after conformal transformation of the index profile; (d) E 2 at the center of the fiber as a function of time, showing the attenuation of optical intensity.

Fig. 2
Fig. 2

(a) Optical intensity distribution in the cross section of a bent fiber with a radius of 5.5 mm (log scale) and (b) central regions of intensity profiles taken at successive times ( Δ t = 1 fs ) in one period of oscillation.

Fig. 3
Fig. 3

Dependence of bending loss on bending radius for (a) ESM-5 PCF and (b) LMA-8 PCF. The squares and triangles denote the experimental and simulation data, respectively.

Fig. 4
Fig. 4

Loss spectrum of ESM-5 PCF with different bend radii. Experimental and simulation data are shown by the solid and dashed curves, respectively.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

n eq 2 ( x , y ) = n 2 ( x , y ) ( 1 + 2 x R b ) ,

Metrics