Abstract

We study the spontaneous emission of a four-level atom with two transitions coupled to a reservoir that has a photonic bandgap near the band edge. Moreover, the transition from the upper level to an auxiliary level is driven by a laser. Considering the different detuning of the external driving field, we discuss some effects, such as a laser-induced dark line, a laser-induced line splitting, and a laser-induced pushing of a dressed state out of the bandgap, which originate from the quantum interference effect and control of the external driving field.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).
    [CrossRef] [PubMed]
  2. S. John, Phys. Rev. Lett. 58, 2486 (1987).
    [CrossRef] [PubMed]
  3. H. Huang, X. H. Lu, and S. Y. Zhu, Phys. Rev. A 57, 4945 (1998).
    [CrossRef]
  4. X. Huang and Y. Yang, J. Opt. Soc. Am. B 24, 699 (2007).
    [CrossRef]
  5. S. Y. Xie, Y. P. Yang, H. Cheng, S. Y. Zhu, and X. Wu, Chin. Phys. Lett. 17, 25 (2000).
    [CrossRef]
  6. R. Tan and G. X. Li, J. Mod. Opt. 52, 1729 (2005).
    [CrossRef]
  7. E. Paspalakis, D. G. Angelakis, and P. L. Knight, Opt. Commun. 172, 229 (1999).
    [CrossRef]
  8. S. John and J. Wang, Phys. Rev. Lett. 64, 2418 (1990).
    [CrossRef] [PubMed]
  9. S. John and J. Wang, Phys. Rev. B 43, 12772 (1991).
    [CrossRef]
  10. A. G. Kofman, G. Kurizki, and B. Sherman, J. Mod. Opt. 41, 353 (1994).
    [CrossRef]
  11. S. Y. Zhu, L. M. Narducci, and M. O. Scully, Phys. Rev. A 52, 4791 (1995).
    [CrossRef] [PubMed]

2007 (1)

2005 (1)

R. Tan and G. X. Li, J. Mod. Opt. 52, 1729 (2005).
[CrossRef]

2000 (1)

S. Y. Xie, Y. P. Yang, H. Cheng, S. Y. Zhu, and X. Wu, Chin. Phys. Lett. 17, 25 (2000).
[CrossRef]

1999 (1)

E. Paspalakis, D. G. Angelakis, and P. L. Knight, Opt. Commun. 172, 229 (1999).
[CrossRef]

1998 (1)

H. Huang, X. H. Lu, and S. Y. Zhu, Phys. Rev. A 57, 4945 (1998).
[CrossRef]

1995 (1)

S. Y. Zhu, L. M. Narducci, and M. O. Scully, Phys. Rev. A 52, 4791 (1995).
[CrossRef] [PubMed]

1994 (1)

A. G. Kofman, G. Kurizki, and B. Sherman, J. Mod. Opt. 41, 353 (1994).
[CrossRef]

1991 (1)

S. John and J. Wang, Phys. Rev. B 43, 12772 (1991).
[CrossRef]

1990 (1)

S. John and J. Wang, Phys. Rev. Lett. 64, 2418 (1990).
[CrossRef] [PubMed]

1987 (2)

E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).
[CrossRef] [PubMed]

S. John, Phys. Rev. Lett. 58, 2486 (1987).
[CrossRef] [PubMed]

Chin. Phys. Lett. (1)

S. Y. Xie, Y. P. Yang, H. Cheng, S. Y. Zhu, and X. Wu, Chin. Phys. Lett. 17, 25 (2000).
[CrossRef]

J. Mod. Opt. (2)

R. Tan and G. X. Li, J. Mod. Opt. 52, 1729 (2005).
[CrossRef]

A. G. Kofman, G. Kurizki, and B. Sherman, J. Mod. Opt. 41, 353 (1994).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

E. Paspalakis, D. G. Angelakis, and P. L. Knight, Opt. Commun. 172, 229 (1999).
[CrossRef]

Phys. Rev. A (2)

H. Huang, X. H. Lu, and S. Y. Zhu, Phys. Rev. A 57, 4945 (1998).
[CrossRef]

S. Y. Zhu, L. M. Narducci, and M. O. Scully, Phys. Rev. A 52, 4791 (1995).
[CrossRef] [PubMed]

Phys. Rev. B (1)

S. John and J. Wang, Phys. Rev. B 43, 12772 (1991).
[CrossRef]

Phys. Rev. Lett. (3)

E. Yablonovitch, Phys. Rev. Lett. 58, 2059 (1987).
[CrossRef] [PubMed]

S. John, Phys. Rev. Lett. 58, 2486 (1987).
[CrossRef] [PubMed]

S. John and J. Wang, Phys. Rev. Lett. 64, 2418 (1990).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Level scheme of the model atom: (a) upper level and three lower levels in the bare-state picture; (b) two upper levels and two lower levels in the dressed state picture.

Fig. 2
Fig. 2

Individual spectrum curves with small detuning. The atom initially is in the state 2 ( b 2 ( 0 ) = 1 , b 3 ( 0 ) = 0 ), and one transition frequency inside the bandgap ( δ 21 = 1 ) and the other transition frequency outside the bandgap ( δ 20 = 1 ) .

Fig. 3
Fig. 3

Influence of detuning of driving field on individual spectrum curves, where the thin curve (thick curve) represents the spectrum line for the resonant case (for the larger detuning). All the parameters are in units of c, and c is an arbitrary constant in Figs. 2, 3.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

H = Ω 3 2 e i Δ t + λ g λ e i ( ω λ ω 20 ) t 2 0 a λ + γ g γ e i ( ω γ ω 21 ) t 2 1 a γ + Ω * 2 3 e i Δ t + λ g λ * e i ( ω λ ω 20 ) t 0 2 a λ + + γ g γ * e i ( ω γ ω 21 ) t 1 2 a γ + .
Ψ ( t ) = b 3 ( t ) 3 , 0 + b 2 ( t ) 2 , 0 + λ b λ ( t ) 0 , 1 λ + γ b γ ( t ) 1 , 1 γ ,
i b ̇ 3 ( t ) = Ω b 2 ( t ) e i Δ t ,
i b ̇ 2 ( t ) = Ω * b 3 ( t ) e i Δ t + λ g λ b λ ( t ) e i ( ω λ ω 20 ) t + γ g γ b γ ( t ) e i ( ω γ ω 21 ) t ,
i b ̇ λ ( t ) = g λ * b 2 ( t ) e i ( ω λ ω 20 ) t ,
i b ̇ γ ( t ) = g γ * b 2 ( t ) e i ( ω γ ω 21 ) t .
K λ ( γ ) ( t t ) = λ ( γ ) g λ ( γ ) 2 e i ( ω λ ( γ ) ω 20 ( 21 ) ) ( t t ) c 1 ( 2 ) 3 2 d ω ρ ( ω ) e i ( ω ω 20 ( 21 ) ) ( t t ) ,
i b ̇ 2 ( t ) = Ω * b 3 ( t ) e i Δ t i 0 t d t b 2 ( t ) K λ ( t t ) i 0 t d t b 2 ( t ) K γ ( t t ) .
ρ ( ω ) = 1 π ω ω e ( ε + ω ω e ) Θ ( ω ω e ) .
a λ ( t ) = g 1 1 δ λ δ 20 Ω 2 ( δ λ δ 20 Δ ) + i c 1 3 2 ( i ε + δ λ ) + i c 2 3 2 ( i ε + δ λ δ 20 + δ 21 ) ,
a γ ( t ) = g 2 1 δ γ δ 21 Ω 2 ( δ γ δ 21 Δ ) + i c 1 3 2 ( i ε + δ γ δ 21 + δ 20 ) + i c 2 3 2 ( i ε + δ γ ) ,

Metrics