Abstract

We used the high-precision laser interferometer technique of power recycling to characterize the optical loss of an all-reflective grating beam splitter. This beam splitter was used to set up a Michelson interferometer with a power-recycling resonator with a finesse of 883. Analyzing the results obtained, we determined the beam splitter’s total optical loss to be (0.193±0.019)%. Low loss all-reflective beam splitters might find application in future high-power laser interferometers for the detection of gravitational waves.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. K.-X. Sun and R. L. Byer, Opt. Lett. 23, 567 (1998).
    [CrossRef]
  2. A. Bunkowksi, O. Burmeister, P. Beyersdorf, K. Danzmann, R. Schnabel, T. Clausnitzer, E.-B. Kley, and A. Tünnermann, Opt. Lett. 29, 2342 (2004).
    [CrossRef]
  3. R. Schnabel, A. Bunkowski, O. Burmeister, and K. Danzmann, Opt. Lett. 31, 658 (2006).
    [CrossRef] [PubMed]
  4. S. Hild, H. Lück, W. Winkler, K. Strain, H. Grote, J. Smith, M. Malec, M. Hewitson, B. Willke, J. Hough, and K. Danzmann, Appl. Opt. 45, 7269 (2006).
    [CrossRef] [PubMed]
  5. W. Winkler, K. Danzmann, A. Rüdiger, and R. Schilling, Phys. Rev. A 44, 7022 (1991).
    [CrossRef] [PubMed]
  6. D. Schnier, J. Mizuno, G. Heinzel, H. Lück, A. Rüdiger, R. Schilling, M. Schrempel, W. Winkler, and K. Danzmann, Phys. Lett. A 225, 210 (1997).
    [CrossRef]
  7. S. Fahr, T. Clausnitzer, E.-B. Kley, A. Tünnermann, Appl. Opt. 46, 6092 (2007).
    [CrossRef] [PubMed]
  8. A. E. Siegman, J. Opt. Soc. Am. A 2, 1793 (1985).
    [CrossRef]

2007 (1)

2006 (2)

2004 (1)

1998 (1)

1997 (1)

D. Schnier, J. Mizuno, G. Heinzel, H. Lück, A. Rüdiger, R. Schilling, M. Schrempel, W. Winkler, and K. Danzmann, Phys. Lett. A 225, 210 (1997).
[CrossRef]

1991 (1)

W. Winkler, K. Danzmann, A. Rüdiger, and R. Schilling, Phys. Rev. A 44, 7022 (1991).
[CrossRef] [PubMed]

1985 (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Comparison of a (a) conventional with an all-reflective Michelson interferometer with a (b) diffractive beam splitter (DBS). The additional mirror M PR can establish a PR cavity to increase the light power inside the interferometer.

Fig. 2
Fig. 2

Variation of the widths of a fundamental Gaussian mode in the diffraction plane versus propagation z through a Michelson interferometer with diffractive beam splitter. The saggital beam width is identical in both arms and matches to trace (00).

Fig. 3
Fig. 3

Experimental setup for the interferometric characterization of a DBS. M, mirror; MC, mode-cleaner; EOM, electro-optical modulator; PD, photodiode.

Fig. 4
Fig. 4

Scan over one PR-cavity resonance peak (measurement time 1 ms ). The tuning is calibrated with signals at ± 1.843 MHz .

Tables (1)

Tables Icon

Table 1 Error Propagation

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

l PR = z 0 + R PR 2 R PR 2 4 ( w 0 2 π λ ) 2 ,
F ref = π arccos [ 1 ( 1 ρ PR ρ end ) 2 ( 2 ρ PR ρ end ) ] ,

Metrics