Abstract

We used the high-precision laser interferometer technique of power recycling to characterize the optical loss of an all-reflective grating beam splitter. This beam splitter was used to set up a Michelson interferometer with a power-recycling resonator with a finesse of 883. Analyzing the results obtained, we determined the beam splitter’s total optical loss to be (0.193±0.019)%. Low loss all-reflective beam splitters might find application in future high-power laser interferometers for the detection of gravitational waves.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |

  1. K.-X. Sun and R. L. Byer, Opt. Lett. 23, 567 (1998).
    [CrossRef]
  2. A. Bunkowksi, O. Burmeister, P. Beyersdorf, K. Danzmann, R. Schnabel, T. Clausnitzer, E.-B. Kley, and A. Tünnermann, Opt. Lett. 29, 2342 (2004).
    [CrossRef]
  3. R. Schnabel, A. Bunkowski, O. Burmeister, and K. Danzmann, Opt. Lett. 31, 658 (2006).
    [CrossRef] [PubMed]
  4. S. Hild, H. Lück, W. Winkler, K. Strain, H. Grote, J. Smith, M. Malec, M. Hewitson, B. Willke, J. Hough, and K. Danzmann, Appl. Opt. 45, 7269 (2006).
    [CrossRef] [PubMed]
  5. W. Winkler, K. Danzmann, A. Rüdiger, and R. Schilling, Phys. Rev. A 44, 7022 (1991).
    [CrossRef] [PubMed]
  6. D. Schnier, J. Mizuno, G. Heinzel, H. Lück, A. Rüdiger, R. Schilling, M. Schrempel, W. Winkler, and K. Danzmann, Phys. Lett. A 225, 210 (1997).
    [CrossRef]
  7. S. Fahr, T. Clausnitzer, E.-B. Kley, A. Tünnermann, Appl. Opt. 46, 6092 (2007).
    [CrossRef] [PubMed]
  8. A. E. Siegman, J. Opt. Soc. Am. A 2, 1793 (1985).
    [CrossRef]

2007

2006

2004

1998

1997

D. Schnier, J. Mizuno, G. Heinzel, H. Lück, A. Rüdiger, R. Schilling, M. Schrempel, W. Winkler, and K. Danzmann, Phys. Lett. A 225, 210 (1997).
[CrossRef]

1991

W. Winkler, K. Danzmann, A. Rüdiger, and R. Schilling, Phys. Rev. A 44, 7022 (1991).
[CrossRef] [PubMed]

1985

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Comparison of a (a) conventional with an all-reflective Michelson interferometer with a (b) diffractive beam splitter (DBS). The additional mirror M PR can establish a PR cavity to increase the light power inside the interferometer.

Fig. 2
Fig. 2

Variation of the widths of a fundamental Gaussian mode in the diffraction plane versus propagation z through a Michelson interferometer with diffractive beam splitter. The saggital beam width is identical in both arms and matches to trace (00).

Fig. 3
Fig. 3

Experimental setup for the interferometric characterization of a DBS. M, mirror; MC, mode-cleaner; EOM, electro-optical modulator; PD, photodiode.

Fig. 4
Fig. 4

Scan over one PR-cavity resonance peak (measurement time 1 ms ). The tuning is calibrated with signals at ± 1.843 MHz .

Tables (1)

Tables Icon

Table 1 Error Propagation

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

l PR = z 0 + R PR 2 R PR 2 4 ( w 0 2 π λ ) 2 ,
F ref = π arccos [ 1 ( 1 ρ PR ρ end ) 2 ( 2 ρ PR ρ end ) ] ,

Metrics