Abstract

We demonstrate single higher-order transverse mode operation of a radially polarized Nd:YAG laser by using a polarization-selective and reflectivity-modulated output coupler. A narrow annular region with low reflectivity fabricated in a photonic crystal mirror behaves so as to select a higher-order transverse mode of a cylindrically symmetric laser beam. A double-ring-shaped radially polarized TM02 mode beam is stably generated.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. S. Youngworth and T. G. Brown, Opt. Express 7, 77 (2000).
    [CrossRef] [PubMed]
  2. S. Quabis, R. Dorn, M. Eberler, O. Glöcke, and G. Leuchs, Opt. Commun. 179, 1 (2000).
    [CrossRef]
  3. R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).
    [CrossRef] [PubMed]
  4. Y. Kozawa and S. Sato, Opt. Lett. 31, 820 (2006).
    [CrossRef] [PubMed]
  5. Y. Kozawa and S. Sato, J. Opt. Soc. Am. A 24, 1793 (2007).
    [CrossRef]
  6. Y. Kozawa, S. Sato, T. Sato, Y. Inoue, Y. Ohtera, and S. Kawakami, Appl. Phys. Express 1, 022008 (2008).
    [CrossRef]
  7. J. Hamazaki, A. Kawamoto, R. Morita, and T. Omatsu, Opt. Express 16, 10762 (2008).
    [CrossRef] [PubMed]
  8. J. Li, K. Ueda, L. Zhong, M. Musha, A. Shirakawa, and T. Sato, Opt. Express 16, 10841 (2008).
    [CrossRef] [PubMed]
  9. T. Sato, K. Miura, N. Ishino, Y. Ohtera, T. Tamamura, and S. Kawakami, Opt. Quantum Electron. 34, 63 (2002).
    [CrossRef]
  10. A. A. Tovar, J. Opt. Soc. Am. A 15, 2705 (1998).
    [CrossRef]
  11. A. E. Siegman, Lasers (University Science Books, 1986).

2008 (3)

2007 (1)

2006 (1)

2003 (1)

R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef] [PubMed]

2002 (1)

T. Sato, K. Miura, N. Ishino, Y. Ohtera, T. Tamamura, and S. Kawakami, Opt. Quantum Electron. 34, 63 (2002).
[CrossRef]

2000 (2)

S. Quabis, R. Dorn, M. Eberler, O. Glöcke, and G. Leuchs, Opt. Commun. 179, 1 (2000).
[CrossRef]

K. S. Youngworth and T. G. Brown, Opt. Express 7, 77 (2000).
[CrossRef] [PubMed]

1998 (1)

Brown, T. G.

Dorn, R.

R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef] [PubMed]

S. Quabis, R. Dorn, M. Eberler, O. Glöcke, and G. Leuchs, Opt. Commun. 179, 1 (2000).
[CrossRef]

Eberler, M.

S. Quabis, R. Dorn, M. Eberler, O. Glöcke, and G. Leuchs, Opt. Commun. 179, 1 (2000).
[CrossRef]

Glöcke, O.

S. Quabis, R. Dorn, M. Eberler, O. Glöcke, and G. Leuchs, Opt. Commun. 179, 1 (2000).
[CrossRef]

Hamazaki, J.

Inoue, Y.

Y. Kozawa, S. Sato, T. Sato, Y. Inoue, Y. Ohtera, and S. Kawakami, Appl. Phys. Express 1, 022008 (2008).
[CrossRef]

Ishino, N.

T. Sato, K. Miura, N. Ishino, Y. Ohtera, T. Tamamura, and S. Kawakami, Opt. Quantum Electron. 34, 63 (2002).
[CrossRef]

Kawakami, S.

Y. Kozawa, S. Sato, T. Sato, Y. Inoue, Y. Ohtera, and S. Kawakami, Appl. Phys. Express 1, 022008 (2008).
[CrossRef]

T. Sato, K. Miura, N. Ishino, Y. Ohtera, T. Tamamura, and S. Kawakami, Opt. Quantum Electron. 34, 63 (2002).
[CrossRef]

Kawamoto, A.

Kozawa, Y.

Y. Kozawa, S. Sato, T. Sato, Y. Inoue, Y. Ohtera, and S. Kawakami, Appl. Phys. Express 1, 022008 (2008).
[CrossRef]

Y. Kozawa and S. Sato, J. Opt. Soc. Am. A 24, 1793 (2007).
[CrossRef]

Y. Kozawa and S. Sato, Opt. Lett. 31, 820 (2006).
[CrossRef] [PubMed]

Leuchs, G.

R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef] [PubMed]

S. Quabis, R. Dorn, M. Eberler, O. Glöcke, and G. Leuchs, Opt. Commun. 179, 1 (2000).
[CrossRef]

Li, J.

Miura, K.

T. Sato, K. Miura, N. Ishino, Y. Ohtera, T. Tamamura, and S. Kawakami, Opt. Quantum Electron. 34, 63 (2002).
[CrossRef]

Morita, R.

Musha, M.

Ohtera, Y.

Y. Kozawa, S. Sato, T. Sato, Y. Inoue, Y. Ohtera, and S. Kawakami, Appl. Phys. Express 1, 022008 (2008).
[CrossRef]

T. Sato, K. Miura, N. Ishino, Y. Ohtera, T. Tamamura, and S. Kawakami, Opt. Quantum Electron. 34, 63 (2002).
[CrossRef]

Omatsu, T.

Quabis, S.

R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef] [PubMed]

S. Quabis, R. Dorn, M. Eberler, O. Glöcke, and G. Leuchs, Opt. Commun. 179, 1 (2000).
[CrossRef]

Sato, S.

Y. Kozawa, S. Sato, T. Sato, Y. Inoue, Y. Ohtera, and S. Kawakami, Appl. Phys. Express 1, 022008 (2008).
[CrossRef]

Y. Kozawa and S. Sato, J. Opt. Soc. Am. A 24, 1793 (2007).
[CrossRef]

Y. Kozawa and S. Sato, Opt. Lett. 31, 820 (2006).
[CrossRef] [PubMed]

Sato, T.

Y. Kozawa, S. Sato, T. Sato, Y. Inoue, Y. Ohtera, and S. Kawakami, Appl. Phys. Express 1, 022008 (2008).
[CrossRef]

J. Li, K. Ueda, L. Zhong, M. Musha, A. Shirakawa, and T. Sato, Opt. Express 16, 10841 (2008).
[CrossRef] [PubMed]

T. Sato, K. Miura, N. Ishino, Y. Ohtera, T. Tamamura, and S. Kawakami, Opt. Quantum Electron. 34, 63 (2002).
[CrossRef]

Shirakawa, A.

Siegman, A. E.

A. E. Siegman, Lasers (University Science Books, 1986).

Tamamura, T.

T. Sato, K. Miura, N. Ishino, Y. Ohtera, T. Tamamura, and S. Kawakami, Opt. Quantum Electron. 34, 63 (2002).
[CrossRef]

Tovar, A. A.

Ueda, K.

Youngworth, K. S.

Zhong, L.

Appl. Phys. Express (1)

Y. Kozawa, S. Sato, T. Sato, Y. Inoue, Y. Ohtera, and S. Kawakami, Appl. Phys. Express 1, 022008 (2008).
[CrossRef]

J. Opt. Soc. Am. A (2)

Opt. Commun. (1)

S. Quabis, R. Dorn, M. Eberler, O. Glöcke, and G. Leuchs, Opt. Commun. 179, 1 (2000).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Opt. Quantum Electron. (1)

T. Sato, K. Miura, N. Ishino, Y. Ohtera, T. Tamamura, and S. Kawakami, Opt. Quantum Electron. 34, 63 (2002).
[CrossRef]

Phys. Rev. Lett. (1)

R. Dorn, S. Quabis, and G. Leuchs, Phys. Rev. Lett. 91, 233901 (2003).
[CrossRef] [PubMed]

Other (1)

A. E. Siegman, Lasers (University Science Books, 1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Schematic of a substrate pattern for a reflectivity-modified PhCM. The units are micrometers. (b) Schematic of a single transverse mode operation with a TM 02 mode.

Fig. 2
Fig. 2

Theoretical intensity profiles of radially polarized Laguerre–Gaussian TM 0 n modes along the beam radius for the modes of n = 1 , 2, 3, 4, and 6. The horizontal axis is in units of the Gaussian beam width w ( z ) .

Fig. 3
Fig. 3

Schematic of a Nd:YAG laser cavity with a reflectivity-modulated photonic crystal mirror.

Fig. 4
Fig. 4

Output power as a function of drive current for the cavity without (open circles) and with (filled circles) an aperture.

Fig. 5
Fig. 5

Intensity distributions of the laser beams generated from the cavity without an aperture at the threshold (in the top row) and a drive current of 23 A (in the middle row). In the bottom row, the intensity distributions with an aperture at a drive current of 23 A are shown.

Fig. 6
Fig. 6

Measured intensity profiles across the beam center in the horizontal direction; (a)–(c) correspond to Figs. 5a, 5e, 5i, respectively. The solid curves are the results of the fitting to a TM 02 mode in (a) and (c) and to a superposition of TM 02 and TM 06 modes in (b). (d) shows the detail of the fitting by a superposition of TM 02 (dashed curve) and TM 06 (dashed-dotted curve) modes depicted in (b).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

E 0 n TM ( r , z ) 2 1 w 2 ( z ) ( 2 r w ( z ) ) 2 [ L n 1 1 ( 2 r 2 w 2 ( z ) ) ] 2 exp ( 2 r 2 w 2 ( z ) ) ,

Metrics