Abstract

We report controllable (slow or fast) propagation of low-intensity probe-light pulses through erbium-doped fiber periodically saturated by the synchronized master-pulse sequence. These two pulse sequences could have significantly different carrier wavelengths within the fundamental absorption spectrum 14701570nm of Er+3 ions. The effect of fractional delay or advancement grew with the fiber optical absorption at the probe wavelength and could be significantly stronger than that at the saturating wavelength. The probe–pulse advancement was observed in the case when the saturating and probe waves were modulated approximately in antiphase. The observed effects are explained in the framework of a simple model of a periodically saturated homogeneously broadened absorption line.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Schweinsberg, N. N. Lepeshkin, M. S. Bigelow, R. W. Boyd, and S. Jarabo, Europhys. Lett. 73, 218 (2006).
    [CrossRef]
  2. G. M. Gehring, A. Schweinsberg, Ch. Barsi, N. Kostinski, and R. W. Boyd, Science 312, 895 (2006).
    [CrossRef] [PubMed]
  3. S. Melle, O. G. Calderon, F. Carreno, E. Cabrera, M. A. Anton, and S. Jarabo, Opt. Commun. 279, 53 (2007).
    [CrossRef]
  4. S. E. Schwartz and T. Y. Tan, Appl. Phys. Lett. 10, 4 (1967).
    [CrossRef]
  5. L. W. Hillman, R. W. Boyd, J. Krasinski, and C. R. Stroud, Jr., Opt. Commun. 45, 416 (1983).
    [CrossRef]
  6. M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, Phys. Rev. Lett. 90, 113903-l (2003).
    [CrossRef] [PubMed]
  7. N. G. Basov, R. V. Ambartsumyan, V. S. Zuev, P. G. Kryukov, and V. S. Letokhov, Sov. Phys. Dokl. 10, 1039 (1966).
  8. A. C. Selden, Br. J. Appl. Phys. 18, 743 (1967).
    [CrossRef]
  9. E. Desurvire, Erbium-Doped Fiber Amplifiers: Principles and Applications (Wiley Interscience, 2002).
  10. X. Zhiao, P. Palinginis, B. Pesala, C. J. Chang-Husnain, and Ph. Hemmer, Opt. Express 13, 7899 (2005).
    [CrossRef]

2007 (1)

S. Melle, O. G. Calderon, F. Carreno, E. Cabrera, M. A. Anton, and S. Jarabo, Opt. Commun. 279, 53 (2007).
[CrossRef]

2006 (2)

A. Schweinsberg, N. N. Lepeshkin, M. S. Bigelow, R. W. Boyd, and S. Jarabo, Europhys. Lett. 73, 218 (2006).
[CrossRef]

G. M. Gehring, A. Schweinsberg, Ch. Barsi, N. Kostinski, and R. W. Boyd, Science 312, 895 (2006).
[CrossRef] [PubMed]

2005 (1)

2003 (1)

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, Phys. Rev. Lett. 90, 113903-l (2003).
[CrossRef] [PubMed]

1983 (1)

L. W. Hillman, R. W. Boyd, J. Krasinski, and C. R. Stroud, Jr., Opt. Commun. 45, 416 (1983).
[CrossRef]

1967 (2)

A. C. Selden, Br. J. Appl. Phys. 18, 743 (1967).
[CrossRef]

S. E. Schwartz and T. Y. Tan, Appl. Phys. Lett. 10, 4 (1967).
[CrossRef]

1966 (1)

N. G. Basov, R. V. Ambartsumyan, V. S. Zuev, P. G. Kryukov, and V. S. Letokhov, Sov. Phys. Dokl. 10, 1039 (1966).

Ambartsumyan, R. V.

N. G. Basov, R. V. Ambartsumyan, V. S. Zuev, P. G. Kryukov, and V. S. Letokhov, Sov. Phys. Dokl. 10, 1039 (1966).

Anton, M. A.

S. Melle, O. G. Calderon, F. Carreno, E. Cabrera, M. A. Anton, and S. Jarabo, Opt. Commun. 279, 53 (2007).
[CrossRef]

Barsi, Ch.

G. M. Gehring, A. Schweinsberg, Ch. Barsi, N. Kostinski, and R. W. Boyd, Science 312, 895 (2006).
[CrossRef] [PubMed]

Basov, N. G.

N. G. Basov, R. V. Ambartsumyan, V. S. Zuev, P. G. Kryukov, and V. S. Letokhov, Sov. Phys. Dokl. 10, 1039 (1966).

Bigelow, M. S.

A. Schweinsberg, N. N. Lepeshkin, M. S. Bigelow, R. W. Boyd, and S. Jarabo, Europhys. Lett. 73, 218 (2006).
[CrossRef]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, Phys. Rev. Lett. 90, 113903-l (2003).
[CrossRef] [PubMed]

Boyd, R. W.

G. M. Gehring, A. Schweinsberg, Ch. Barsi, N. Kostinski, and R. W. Boyd, Science 312, 895 (2006).
[CrossRef] [PubMed]

A. Schweinsberg, N. N. Lepeshkin, M. S. Bigelow, R. W. Boyd, and S. Jarabo, Europhys. Lett. 73, 218 (2006).
[CrossRef]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, Phys. Rev. Lett. 90, 113903-l (2003).
[CrossRef] [PubMed]

L. W. Hillman, R. W. Boyd, J. Krasinski, and C. R. Stroud, Jr., Opt. Commun. 45, 416 (1983).
[CrossRef]

Cabrera, E.

S. Melle, O. G. Calderon, F. Carreno, E. Cabrera, M. A. Anton, and S. Jarabo, Opt. Commun. 279, 53 (2007).
[CrossRef]

Calderon, O. G.

S. Melle, O. G. Calderon, F. Carreno, E. Cabrera, M. A. Anton, and S. Jarabo, Opt. Commun. 279, 53 (2007).
[CrossRef]

Carreno, F.

S. Melle, O. G. Calderon, F. Carreno, E. Cabrera, M. A. Anton, and S. Jarabo, Opt. Commun. 279, 53 (2007).
[CrossRef]

Chang-Husnain, C. J.

Desurvire, E.

E. Desurvire, Erbium-Doped Fiber Amplifiers: Principles and Applications (Wiley Interscience, 2002).

Gehring, G. M.

G. M. Gehring, A. Schweinsberg, Ch. Barsi, N. Kostinski, and R. W. Boyd, Science 312, 895 (2006).
[CrossRef] [PubMed]

Hemmer, Ph.

Hillman, L. W.

L. W. Hillman, R. W. Boyd, J. Krasinski, and C. R. Stroud, Jr., Opt. Commun. 45, 416 (1983).
[CrossRef]

Jarabo, S.

S. Melle, O. G. Calderon, F. Carreno, E. Cabrera, M. A. Anton, and S. Jarabo, Opt. Commun. 279, 53 (2007).
[CrossRef]

A. Schweinsberg, N. N. Lepeshkin, M. S. Bigelow, R. W. Boyd, and S. Jarabo, Europhys. Lett. 73, 218 (2006).
[CrossRef]

Kostinski, N.

G. M. Gehring, A. Schweinsberg, Ch. Barsi, N. Kostinski, and R. W. Boyd, Science 312, 895 (2006).
[CrossRef] [PubMed]

Krasinski, J.

L. W. Hillman, R. W. Boyd, J. Krasinski, and C. R. Stroud, Jr., Opt. Commun. 45, 416 (1983).
[CrossRef]

Kryukov, P. G.

N. G. Basov, R. V. Ambartsumyan, V. S. Zuev, P. G. Kryukov, and V. S. Letokhov, Sov. Phys. Dokl. 10, 1039 (1966).

Lepeshkin, N. N.

A. Schweinsberg, N. N. Lepeshkin, M. S. Bigelow, R. W. Boyd, and S. Jarabo, Europhys. Lett. 73, 218 (2006).
[CrossRef]

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, Phys. Rev. Lett. 90, 113903-l (2003).
[CrossRef] [PubMed]

Letokhov, V. S.

N. G. Basov, R. V. Ambartsumyan, V. S. Zuev, P. G. Kryukov, and V. S. Letokhov, Sov. Phys. Dokl. 10, 1039 (1966).

Melle, S.

S. Melle, O. G. Calderon, F. Carreno, E. Cabrera, M. A. Anton, and S. Jarabo, Opt. Commun. 279, 53 (2007).
[CrossRef]

Palinginis, P.

Pesala, B.

Schwartz, S. E.

S. E. Schwartz and T. Y. Tan, Appl. Phys. Lett. 10, 4 (1967).
[CrossRef]

Schweinsberg, A.

A. Schweinsberg, N. N. Lepeshkin, M. S. Bigelow, R. W. Boyd, and S. Jarabo, Europhys. Lett. 73, 218 (2006).
[CrossRef]

G. M. Gehring, A. Schweinsberg, Ch. Barsi, N. Kostinski, and R. W. Boyd, Science 312, 895 (2006).
[CrossRef] [PubMed]

Selden, A. C.

A. C. Selden, Br. J. Appl. Phys. 18, 743 (1967).
[CrossRef]

Stroud, C. R.

L. W. Hillman, R. W. Boyd, J. Krasinski, and C. R. Stroud, Jr., Opt. Commun. 45, 416 (1983).
[CrossRef]

Tan, T. Y.

S. E. Schwartz and T. Y. Tan, Appl. Phys. Lett. 10, 4 (1967).
[CrossRef]

Zhiao, X.

Zuev, V. S.

N. G. Basov, R. V. Ambartsumyan, V. S. Zuev, P. G. Kryukov, and V. S. Letokhov, Sov. Phys. Dokl. 10, 1039 (1966).

Appl. Phys. Lett. (1)

S. E. Schwartz and T. Y. Tan, Appl. Phys. Lett. 10, 4 (1967).
[CrossRef]

Br. J. Appl. Phys. (1)

A. C. Selden, Br. J. Appl. Phys. 18, 743 (1967).
[CrossRef]

Europhys. Lett. (1)

A. Schweinsberg, N. N. Lepeshkin, M. S. Bigelow, R. W. Boyd, and S. Jarabo, Europhys. Lett. 73, 218 (2006).
[CrossRef]

Opt. Commun. (2)

L. W. Hillman, R. W. Boyd, J. Krasinski, and C. R. Stroud, Jr., Opt. Commun. 45, 416 (1983).
[CrossRef]

S. Melle, O. G. Calderon, F. Carreno, E. Cabrera, M. A. Anton, and S. Jarabo, Opt. Commun. 279, 53 (2007).
[CrossRef]

Opt. Express (1)

Phys. Rev. Lett. (1)

M. S. Bigelow, N. N. Lepeshkin, and R. W. Boyd, Phys. Rev. Lett. 90, 113903-l (2003).
[CrossRef] [PubMed]

Science (1)

G. M. Gehring, A. Schweinsberg, Ch. Barsi, N. Kostinski, and R. W. Boyd, Science 312, 895 (2006).
[CrossRef] [PubMed]

Sov. Phys. Dokl. (1)

N. G. Basov, R. V. Ambartsumyan, V. S. Zuev, P. G. Kryukov, and V. S. Letokhov, Sov. Phys. Dokl. 10, 1039 (1966).

Other (1)

E. Desurvire, Erbium-Doped Fiber Amplifiers: Principles and Applications (Wiley Interscience, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

a, Schematic of experimental setup utilized for controllable light-pulse propagation in EDF with saturable absorption. b, Normalized intensity profiles of the output probe wave modulated in-phase (a) and in antiphase (b) with saturating wave ( λ s = 1568 nm , P s = 2.0 mW , λ p = 1526 nm , P p = 0.05 mW , Ω 2 π = 70 Hz ). For reference, dashed curves show the input profiles of the probe waves.

Fig. 2
Fig. 2

Fractional advancement in the saturating waves with λ s = 1568 nm (empty squares) and 1526 nm (filled squares) at average input power P s = 2.0 and 0.5 mW , respectively. Filled circles and filled triangles represent fractional advancement induced by the modulated saturating wave at 1568 nm ( P s = 2.0 mW ) in the weak probe wave at λ p = 1526 nm ( P p = 0.05 mW ) for in-phase and antiphase probe-wave modulation, respectively.

Fig. 3
Fig. 3

Fractional advancement observed in the probe wave as a function of phase angle θ between the modulation in the probe and saturating waves ( λ s = 1568 nm , P s = 2.0 mW , λ p = 1526 nm , P p = 0.05 mW , Ω 2 π = 70 Hz ). The continuous curve shows the theoretical fit obtained from Eq. (6) for P s P sat , s = 2 , Ω τ 0 = 4 , and α 0 L = 1.8 .

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

P in ( t ) = P 0 { 1 + [ m 2 exp ( i Ω t ) + c.c. ] } .
α ( t ) t = 1 + P ( t ) P sat τ 0 [ α ( t ) α 0 1 + P ( t ) P sat ] ,
T ( t ) = exp [ α ( t ) L ] 1 α ( t ) L = 1 α 0 L 1 + P 0 P sat { 1 + [ m 2 P 0 P sat 1 + P 0 P sat + i Ω τ 0 exp ( i Ω t ) + c.c. ] } .
m out = m { 1 + α 0 L ( P 0 P sat ) 1 + P 0 P sat [ 1 + P 0 P sat ( 1 + P 0 P sat ) 2 + Ω 2 τ 0 2 i Ω τ 0 ( 1 + P 0 P sat ) 2 + Ω 2 τ 0 2 ] } .
Δ φ π α 0 L π ( 1 + P 0 P sat ) Ω τ 0 ( P 0 P sat ) ( 1 + P 0 P sat ) 2 + Ω 2 τ 0 2 ,
Δ φ π α 0 L π ( P 0 P sat ) ( 1 + P 0 P sat ) cos ( θ ) Ω τ 0 + sin ( θ ) ( 1 + P 0 P sat ) ( 1 + P 0 P sat ) 2 + Ω 2 τ 0 2 .

Metrics