Abstract

A more simple photonically assisted analog-to-digital conversion system utilizing a cw multiwavelength source and phase modulation instead of a mode-locked laser is presented. The output of the cw multiwavelength source is launched into a dispersive device (such as a single-mode fiber). This fiber creates a pulse train, where the central wavelength of each pulse corresponds to a spectral line of the optical source. The pulses can then be either dispersed again to perform discrete wavelength time stretching or demultiplexed for continuous time analog-to-digital conversion. We experimentally demonstrate the operation of both time stretched and interleaved systems at 38โ€‰GHz. The potential of integrating this type of system on a monolithic chip is discussed.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. C. Valley, Opt. Express 15, 1955 (2007).
    [CrossRef] [PubMed]
  2. F. Coppinger, A. S. Bhushan, and B. Jalali, IEEE Trans. Microwave Theory Tech. 47, 1309 (1999).
    [CrossRef]
  3. Y. Han, O. Boyraz, and B. Jalali, Appl. Phys. Lett. 87, 24116 (2005).
  4. T. Kobayashi, H. Yao, K. Amano, Y. Fukushima, A. Morimoto, and T. Sueta, IEEE J. Quantum Electron. 24, 382 (1988).
    [CrossRef]
  5. A. Godil, B. Auld, and D. Bloom, IEEE J. Quantum Electron. 30, 827 (1994).
    [CrossRef]
  6. S. Bennet, B. Cai, E. Burr, O. Gough, and A. J. Seeds, in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 1999), p. 208.
  7. M. P. Fok and C. Shu, Opt. Express 14, 2618 (2006).
    [CrossRef] [PubMed]

2007

2006

2005

Y. Han, O. Boyraz, and B. Jalali, Appl. Phys. Lett. 87, 24116 (2005).

1999

F. Coppinger, A. S. Bhushan, and B. Jalali, IEEE Trans. Microwave Theory Tech. 47, 1309 (1999).
[CrossRef]

1994

A. Godil, B. Auld, and D. Bloom, IEEE J. Quantum Electron. 30, 827 (1994).
[CrossRef]

1988

T. Kobayashi, H. Yao, K. Amano, Y. Fukushima, A. Morimoto, and T. Sueta, IEEE J. Quantum Electron. 24, 382 (1988).
[CrossRef]

Amano, K.

T. Kobayashi, H. Yao, K. Amano, Y. Fukushima, A. Morimoto, and T. Sueta, IEEE J. Quantum Electron. 24, 382 (1988).
[CrossRef]

Auld, B.

A. Godil, B. Auld, and D. Bloom, IEEE J. Quantum Electron. 30, 827 (1994).
[CrossRef]

Bennet, S.

S. Bennet, B. Cai, E. Burr, O. Gough, and A. J. Seeds, in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 1999), p. 208.

Bhushan, A. S.

F. Coppinger, A. S. Bhushan, and B. Jalali, IEEE Trans. Microwave Theory Tech. 47, 1309 (1999).
[CrossRef]

Bloom, D.

A. Godil, B. Auld, and D. Bloom, IEEE J. Quantum Electron. 30, 827 (1994).
[CrossRef]

Boyraz, O.

Y. Han, O. Boyraz, and B. Jalali, Appl. Phys. Lett. 87, 24116 (2005).

Burr, E.

S. Bennet, B. Cai, E. Burr, O. Gough, and A. J. Seeds, in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 1999), p. 208.

Cai, B.

S. Bennet, B. Cai, E. Burr, O. Gough, and A. J. Seeds, in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 1999), p. 208.

Coppinger, F.

F. Coppinger, A. S. Bhushan, and B. Jalali, IEEE Trans. Microwave Theory Tech. 47, 1309 (1999).
[CrossRef]

Fok, M. P.

Fukushima, Y.

T. Kobayashi, H. Yao, K. Amano, Y. Fukushima, A. Morimoto, and T. Sueta, IEEE J. Quantum Electron. 24, 382 (1988).
[CrossRef]

Godil, A.

A. Godil, B. Auld, and D. Bloom, IEEE J. Quantum Electron. 30, 827 (1994).
[CrossRef]

Gough, O.

S. Bennet, B. Cai, E. Burr, O. Gough, and A. J. Seeds, in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 1999), p. 208.

Han, Y.

Y. Han, O. Boyraz, and B. Jalali, Appl. Phys. Lett. 87, 24116 (2005).

Jalali, B.

Y. Han, O. Boyraz, and B. Jalali, Appl. Phys. Lett. 87, 24116 (2005).

F. Coppinger, A. S. Bhushan, and B. Jalali, IEEE Trans. Microwave Theory Tech. 47, 1309 (1999).
[CrossRef]

Kobayashi, T.

T. Kobayashi, H. Yao, K. Amano, Y. Fukushima, A. Morimoto, and T. Sueta, IEEE J. Quantum Electron. 24, 382 (1988).
[CrossRef]

Morimoto, A.

T. Kobayashi, H. Yao, K. Amano, Y. Fukushima, A. Morimoto, and T. Sueta, IEEE J. Quantum Electron. 24, 382 (1988).
[CrossRef]

Seeds, A. J.

S. Bennet, B. Cai, E. Burr, O. Gough, and A. J. Seeds, in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 1999), p. 208.

Shu, C.

Sueta, T.

T. Kobayashi, H. Yao, K. Amano, Y. Fukushima, A. Morimoto, and T. Sueta, IEEE J. Quantum Electron. 24, 382 (1988).
[CrossRef]

Valley, G. C.

Yao, H.

T. Kobayashi, H. Yao, K. Amano, Y. Fukushima, A. Morimoto, and T. Sueta, IEEE J. Quantum Electron. 24, 382 (1988).
[CrossRef]

Appl. Phys. Lett.

Y. Han, O. Boyraz, and B. Jalali, Appl. Phys. Lett. 87, 24116 (2005).

IEEE J. Quantum Electron.

T. Kobayashi, H. Yao, K. Amano, Y. Fukushima, A. Morimoto, and T. Sueta, IEEE J. Quantum Electron. 24, 382 (1988).
[CrossRef]

A. Godil, B. Auld, and D. Bloom, IEEE J. Quantum Electron. 30, 827 (1994).
[CrossRef]

IEEE Trans. Microwave Theory Tech.

F. Coppinger, A. S. Bhushan, and B. Jalali, IEEE Trans. Microwave Theory Tech. 47, 1309 (1999).
[CrossRef]

Opt. Express

Other

S. Bennet, B. Cai, E. Burr, O. Gough, and A. J. Seeds, in Optical Fiber Communication Conference, OSA Technical Digest Series (Optical Society of America, 1999), p. 208.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the proposed architecture utilizing a cw multiwavelength source, phase modulation, and fiber dispersion in place of a mode-locked laser.

Fig. 2
Fig. 2

Observed traces for the four different wavelengths are superimposed on one trace. The peaks of the four pulses fit to a sinusoid of approximately 9 โ€‰ GHz , corresponding to a time-stretch factor of M = 4 .

Fig. 3
Fig. 3

Extension of the above concept to continuous time photonic ADC.

Fig. 4
Fig. 4

Sampled pulses superimposed onto one trace. The pulse streams corresponding to different central wavelengths are shown in different colors and reconstruct the original 38 โ€‰ GHz waveform under test (dark curve).

Fig. 5
Fig. 5

Potential monolithic implementation of the system described.

Metrics