Abstract

We propose a theoretical model for an optimized fiber structure for use in anti-Stokes laser cooling of solids. The sample is an optical fiber fabricated from a fluorozirconate glass ZBLANP with a core doped with Yb3+ ions. The diameter of the fiber core is optimized to achieve the largest temperature change in the sample. It is shown that for each value of the pump power there is an optimized diameter of the fiber core, which permits the largest drop in the temperature of the sample.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Pringsheim, Z. Phys. 57, 739 (1929).
    [CrossRef]
  2. R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, Nature 377, 500 (1995).
    [CrossRef]
  3. M. Sheik-Bahae and R. I. Epstein, Nat. Photonics 1, 693 (2007).
    [CrossRef]
  4. A. F. Ioffe, Semiconductor Thermoelements and Thermoelectric Cooling (Infoseach, 1957).
  5. T. R. Gosnell, Opt. Lett. 24, 1041 (1999).
    [CrossRef]
  6. G. Lei, J. E. Anderson, M. I. Buchwald, B. C. Edwards, R. I. Epstein, M. T. Murtagh, and G. H. Sigel, Jr., IEEE J. Quantum Electron. 34, 1839 (1998).
    [CrossRef]
  7. G. Nemova and R. Kashyap, in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference (Optical Society of America, 2008), paper JThA31.
  8. R. Kashyap, Fiber Bragg Gratings (Academic, 1999).

2007 (1)

M. Sheik-Bahae and R. I. Epstein, Nat. Photonics 1, 693 (2007).
[CrossRef]

1999 (1)

1998 (1)

G. Lei, J. E. Anderson, M. I. Buchwald, B. C. Edwards, R. I. Epstein, M. T. Murtagh, and G. H. Sigel, Jr., IEEE J. Quantum Electron. 34, 1839 (1998).
[CrossRef]

1995 (1)

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, Nature 377, 500 (1995).
[CrossRef]

1929 (1)

P. Pringsheim, Z. Phys. 57, 739 (1929).
[CrossRef]

Anderson, J. E.

G. Lei, J. E. Anderson, M. I. Buchwald, B. C. Edwards, R. I. Epstein, M. T. Murtagh, and G. H. Sigel, Jr., IEEE J. Quantum Electron. 34, 1839 (1998).
[CrossRef]

Buchwald, M. I.

G. Lei, J. E. Anderson, M. I. Buchwald, B. C. Edwards, R. I. Epstein, M. T. Murtagh, and G. H. Sigel, Jr., IEEE J. Quantum Electron. 34, 1839 (1998).
[CrossRef]

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, Nature 377, 500 (1995).
[CrossRef]

Edwards, B. C.

G. Lei, J. E. Anderson, M. I. Buchwald, B. C. Edwards, R. I. Epstein, M. T. Murtagh, and G. H. Sigel, Jr., IEEE J. Quantum Electron. 34, 1839 (1998).
[CrossRef]

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, Nature 377, 500 (1995).
[CrossRef]

Epstein, R. I.

M. Sheik-Bahae and R. I. Epstein, Nat. Photonics 1, 693 (2007).
[CrossRef]

G. Lei, J. E. Anderson, M. I. Buchwald, B. C. Edwards, R. I. Epstein, M. T. Murtagh, and G. H. Sigel, Jr., IEEE J. Quantum Electron. 34, 1839 (1998).
[CrossRef]

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, Nature 377, 500 (1995).
[CrossRef]

Gosnell, T. R.

T. R. Gosnell, Opt. Lett. 24, 1041 (1999).
[CrossRef]

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, Nature 377, 500 (1995).
[CrossRef]

Ioffe, A. F.

A. F. Ioffe, Semiconductor Thermoelements and Thermoelectric Cooling (Infoseach, 1957).

Kashyap, R.

G. Nemova and R. Kashyap, in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference (Optical Society of America, 2008), paper JThA31.

R. Kashyap, Fiber Bragg Gratings (Academic, 1999).

Lei, G.

G. Lei, J. E. Anderson, M. I. Buchwald, B. C. Edwards, R. I. Epstein, M. T. Murtagh, and G. H. Sigel, Jr., IEEE J. Quantum Electron. 34, 1839 (1998).
[CrossRef]

Mungan, C. E.

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, Nature 377, 500 (1995).
[CrossRef]

Murtagh, M. T.

G. Lei, J. E. Anderson, M. I. Buchwald, B. C. Edwards, R. I. Epstein, M. T. Murtagh, and G. H. Sigel, Jr., IEEE J. Quantum Electron. 34, 1839 (1998).
[CrossRef]

Nemova, G.

G. Nemova and R. Kashyap, in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference (Optical Society of America, 2008), paper JThA31.

Pringsheim, P.

P. Pringsheim, Z. Phys. 57, 739 (1929).
[CrossRef]

Sheik-Bahae, M.

M. Sheik-Bahae and R. I. Epstein, Nat. Photonics 1, 693 (2007).
[CrossRef]

Sigel, G. H.

G. Lei, J. E. Anderson, M. I. Buchwald, B. C. Edwards, R. I. Epstein, M. T. Murtagh, and G. H. Sigel, Jr., IEEE J. Quantum Electron. 34, 1839 (1998).
[CrossRef]

IEEE J. Quantum Electron. (1)

G. Lei, J. E. Anderson, M. I. Buchwald, B. C. Edwards, R. I. Epstein, M. T. Murtagh, and G. H. Sigel, Jr., IEEE J. Quantum Electron. 34, 1839 (1998).
[CrossRef]

Nat. Photonics (1)

M. Sheik-Bahae and R. I. Epstein, Nat. Photonics 1, 693 (2007).
[CrossRef]

Nature (1)

R. I. Epstein, M. I. Buchwald, B. C. Edwards, T. R. Gosnell, and C. E. Mungan, Nature 377, 500 (1995).
[CrossRef]

Opt. Lett. (1)

Z. Phys. (1)

P. Pringsheim, Z. Phys. 57, 739 (1929).
[CrossRef]

Other (3)

A. F. Ioffe, Semiconductor Thermoelements and Thermoelectric Cooling (Infoseach, 1957).

G. Nemova and R. Kashyap, in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference (Optical Society of America, 2008), paper JThA31.

R. Kashyap, Fiber Bragg Gratings (Academic, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Dependence of the drop in temperature of the sample ( Δ T ) and the radius of the fiber core ( R co ) .

Fig. 2
Fig. 2

Dependence of the maximum drop in the sample temperature ( Δ T max ) on the pump power ( P ) (left axis) for the corresponding fiber core radius ( R co ) (right axis) ρ = 75 % .

Fig. 3
Fig. 3

Dependence of the maximum drop of the sample temperature ( Δ T max , left axis) on core and cladding radii ratio ( ρ ) and corresponding values of the fiber core radius ( R co , right axis).

Fig. 4
Fig. 4

Dependence of the temperature drop of the sample ( Δ T ) on the length of the sample ( L ) .

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

P cool = a eff L σ abs ( T s ) N I s ( λ λ F * ( T ) s 1 ) 1 + σ se ( T ) s σ abs ( T s ) + a eff I s ( T s ) P ,
P load = 2 π R cl L ε σ B ( T r 4 T s 4 ) ,
T r 4 T s 4 = a eff I s ( T s ) N σ abs ( T s ) ( λ λ F * 1 ) 2 π R cl ε σ B [ 1 + σ se ( T s ) σ abs ( T s ) + a eff I s ] ( T s ) p .
P ( z ) = P exp { z N [ σ abs 1 + P λ A eff h c γ rad ( σ abs + σ se ) ] } ,

Metrics