Abstract

We demonstrate an optical Fourier processing method to quantify object texture arising from subcellular feature orientation within unstained living cells. Using a digital micromirror device as a Fourier spatial filter, we measured cellular responses to two-dimensional optical Gabor-like filters optimized to sense orientation of nonspherical particles, such as mitochondria, with a width around 0.45μm. Our method showed significantly rounder structures within apoptosis-defective cells lacking the proapoptotic mitochondrial effectors Bax and Bak, when compared with Bax/Bak expressing cells functional for apoptosis, consistent with reported differences in mitochondrial shape in these cells. By decoupling spatial frequency resolution from image resolution, this method enables rapid analysis of nonspherical submicrometer scatterers in an undersampled large field of view and yields spatially localized morphometric parameters that improve the quantitative assessment of biological function.

© 2008 Optical Society of America

Full Article  |  PDF Article

Corrections

Robert M. Pasternack, Zhen Qian, Jing-Yi Zheng, Dimitris N. Metaxas, Eileen White, and Nada N. Boustany, "Measurement of subcellular texture by optical Gabor-like filtering with a digital micromirror device: erratum," Opt. Lett. 34, 1939-1939 (2009)
https://www.osapublishing.org/ol/abstract.cfm?uri=ol-34-13-1939

References

  • View by:
  • |
  • |
  • |

  1. N. N. Boustany, S. C. Kuo, and N. V. Thakor, Opt. Lett. 26, 1063 (2001).
    [CrossRef]
  2. D. Dunn, W. E. Higgins, and J. Wakeley, IEEE Trans. Pattern Anal. Mach. Intell. 16, 130 (1994).
    [CrossRef]
  3. J. G. Daugman, J. Opt. Soc. Am. A 2, 1160 (1985).
    [CrossRef] [PubMed]
  4. A. V. Loud, J. Cell Biol. 37, 27 (1968).
    [CrossRef] [PubMed]
  5. K. Degenhardt and E. White, Clin. Cancer Res. 12, 5298 (2006).
    [CrossRef] [PubMed]
  6. K. Degenhardt, G. Chen, T. Lindsten, and E. White, Cancer Cells 2193 (2002).
    [CrossRef]
  7. M. Karbowski, K. L. Norris, M. M. Cleland, S.-Y. Jeong, and R. J. Youle, Nature 443, 658 (2006).
    [CrossRef] [PubMed]

2006 (2)

K. Degenhardt and E. White, Clin. Cancer Res. 12, 5298 (2006).
[CrossRef] [PubMed]

M. Karbowski, K. L. Norris, M. M. Cleland, S.-Y. Jeong, and R. J. Youle, Nature 443, 658 (2006).
[CrossRef] [PubMed]

2002 (1)

K. Degenhardt, G. Chen, T. Lindsten, and E. White, Cancer Cells 2193 (2002).
[CrossRef]

2001 (1)

1994 (1)

D. Dunn, W. E. Higgins, and J. Wakeley, IEEE Trans. Pattern Anal. Mach. Intell. 16, 130 (1994).
[CrossRef]

1985 (1)

1968 (1)

A. V. Loud, J. Cell Biol. 37, 27 (1968).
[CrossRef] [PubMed]

Boustany, N. N.

Chen, G.

K. Degenhardt, G. Chen, T. Lindsten, and E. White, Cancer Cells 2193 (2002).
[CrossRef]

Cleland, M. M.

M. Karbowski, K. L. Norris, M. M. Cleland, S.-Y. Jeong, and R. J. Youle, Nature 443, 658 (2006).
[CrossRef] [PubMed]

Daugman, J. G.

Degenhardt, K.

K. Degenhardt and E. White, Clin. Cancer Res. 12, 5298 (2006).
[CrossRef] [PubMed]

K. Degenhardt, G. Chen, T. Lindsten, and E. White, Cancer Cells 2193 (2002).
[CrossRef]

Dunn, D.

D. Dunn, W. E. Higgins, and J. Wakeley, IEEE Trans. Pattern Anal. Mach. Intell. 16, 130 (1994).
[CrossRef]

Higgins, W. E.

D. Dunn, W. E. Higgins, and J. Wakeley, IEEE Trans. Pattern Anal. Mach. Intell. 16, 130 (1994).
[CrossRef]

Jeong, S.-Y.

M. Karbowski, K. L. Norris, M. M. Cleland, S.-Y. Jeong, and R. J. Youle, Nature 443, 658 (2006).
[CrossRef] [PubMed]

Karbowski, M.

M. Karbowski, K. L. Norris, M. M. Cleland, S.-Y. Jeong, and R. J. Youle, Nature 443, 658 (2006).
[CrossRef] [PubMed]

Kuo, S. C.

Lindsten, T.

K. Degenhardt, G. Chen, T. Lindsten, and E. White, Cancer Cells 2193 (2002).
[CrossRef]

Loud, A. V.

A. V. Loud, J. Cell Biol. 37, 27 (1968).
[CrossRef] [PubMed]

Norris, K. L.

M. Karbowski, K. L. Norris, M. M. Cleland, S.-Y. Jeong, and R. J. Youle, Nature 443, 658 (2006).
[CrossRef] [PubMed]

Thakor, N. V.

Wakeley, J.

D. Dunn, W. E. Higgins, and J. Wakeley, IEEE Trans. Pattern Anal. Mach. Intell. 16, 130 (1994).
[CrossRef]

White, E.

K. Degenhardt and E. White, Clin. Cancer Res. 12, 5298 (2006).
[CrossRef] [PubMed]

K. Degenhardt, G. Chen, T. Lindsten, and E. White, Cancer Cells 2193 (2002).
[CrossRef]

Youle, R. J.

M. Karbowski, K. L. Norris, M. M. Cleland, S.-Y. Jeong, and R. J. Youle, Nature 443, 658 (2006).
[CrossRef] [PubMed]

Cancer Cells (1)

K. Degenhardt, G. Chen, T. Lindsten, and E. White, Cancer Cells 2193 (2002).
[CrossRef]

Clin. Cancer Res. (1)

K. Degenhardt and E. White, Clin. Cancer Res. 12, 5298 (2006).
[CrossRef] [PubMed]

IEEE Trans. Pattern Anal. Mach. Intell. (1)

D. Dunn, W. E. Higgins, and J. Wakeley, IEEE Trans. Pattern Anal. Mach. Intell. 16, 130 (1994).
[CrossRef]

J. Cell Biol. (1)

A. V. Loud, J. Cell Biol. 37, 27 (1968).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

Nature (1)

M. Karbowski, K. L. Norris, M. M. Cleland, S.-Y. Jeong, and R. J. Youle, Nature 443, 658 (2006).
[CrossRef] [PubMed]

Opt. Lett. (1)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Object’s transform is focused at F 1 and F 2 ; its filtered image is at I CCD . The zeroth order (dotted rays) is blocked at F 2 and F 1 to minimize the dark-field background. The imaging beam (solid rays) incident on the DMD is collimated, and Gabor filtering is applied by the DMD at F 2 . Inset, Gabor filter frequency response.

Fig. 2
Fig. 2

(a) Dark field image of diatom. (b) Object orientation image. Colorscale encodes degree of orientation (aspect ratio) while brightness encodes significance of the total Gabor filter response. (c) Orientation of objects with response intensity 10 % of maximum. Line segment indicates the corresponding structure’s long axis.

Fig. 3
Fig. 3

W2 and D3 images. (a) Differential interference contrast. (b) Dark-field. (c) Object orientation as in Fig. 2b. (d) Orientation of objects with response intensity 15 % of maximum. Line segment indicates the corresponding structure’s long axis. (e), (f) W2 and D3 orientation images after block-processing the initial Gabor-filtered images to simulate a 4 × demagnification. (g), (h) Pixel histograms of all W2 and D3 cells (g) before and (h) after demagnification. Color-bar values in panels (c), (e), and (f) are taken as “aspect ratio.”

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

H ( u , v ) = ( π S 2 2 ) e ( π 2 S 2 2 ) [ ( u U ) 2 + ( v V ) 2 ] ,

Metrics