Abstract

Ultraviolet upconversion emissions of 246.2 and 252.8nm from DJ6 levels of Gd3+ ions were observed in GdF3: 10% Yb3+, 0.7% Tm3+ nanocrystals under 980nm excitation from a laser diode. The DJ6 levels of Gd3+ ions can be efficiently populated by energy transfer processes of YbTmGd and YbGd. A six-photon upconversion process was confirmed by the dependence of 252.8nm emission intensity on the pumping power. The upconversion mechanism in the six-photon process was discussed based on excited state absorption of Gd3+ ions, cross relaxation energy transfer between two excited Gd3+ ions, and energy transfer between Gd3+ and Yb3+ or Tm3+ ions.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. H. Dieke, Spectra and Energy Levels of Rare Earth Ions in Crystals (Interscience, 1968).
  2. W. T. Carnall, G. L. Goodman, K. Rajnak, and R. S. Rana, Argonne National Laboratory Tech. Rep. ANL-88-8 (Argonne National Labortory, 1988).
  3. A. Kumar, D. K. Rai, and S. B. Rai, Solid State Commun. 117, 387 (2001).
    [CrossRef]
  4. H. Kondo, T. Hirai, and S. Hashimoto, J. Lumin. 102, 727 (2003).
    [CrossRef]
  5. A. R. Gharavi and G. L. McPherson, J. Opt. Soc. Am. B 11, 913 (1994).
    [CrossRef]
  6. C. Y. Cao, W. P. Qin, J. S. Zhang, Y. Wang, P. F. Zhu, G. D. Wei, G. F. Wang, R. J. Kim, and L. L. Wang, Opt. Lett. 33, 857 (2008).
    [CrossRef] [PubMed]
  7. W. T. Carnall, P. R. Fields, and K. Rajnak, J. Chem. Phys. 49, 4412 (1968).
    [CrossRef]
  8. W. T. Carnall, P. R. Fields, and K. Rajnak, J. Chem. Phys. 49, 4424 (1968).
    [CrossRef]
  9. F. Auzel, C. R. Acad. Sci. Paris. 262, 1016 (1966).
  10. R. J. Thrash and L. F. Johnson, J. Opt. Soc. Am. B 11, 881 (1994).
    [CrossRef]
  11. M. A. Noginov, M. Curley, P. Venkateswarlu, A. Williams, and H. P. Jenssen, J. Opt. Soc. Am. B 14, 2126 (1997).
    [CrossRef]
  12. J. Sytsma, G. F. Imbush, and G. Blasse, J. Phys. Condens. Matter 2, 5171 (1990).
    [CrossRef]
  13. M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. P. Hehlen, Phys. Rev. B 61, 3337 (2000).
    [CrossRef]

2008 (1)

2003 (1)

H. Kondo, T. Hirai, and S. Hashimoto, J. Lumin. 102, 727 (2003).
[CrossRef]

2001 (1)

A. Kumar, D. K. Rai, and S. B. Rai, Solid State Commun. 117, 387 (2001).
[CrossRef]

2000 (1)

M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. P. Hehlen, Phys. Rev. B 61, 3337 (2000).
[CrossRef]

1997 (1)

1994 (2)

1990 (1)

J. Sytsma, G. F. Imbush, and G. Blasse, J. Phys. Condens. Matter 2, 5171 (1990).
[CrossRef]

1968 (2)

W. T. Carnall, P. R. Fields, and K. Rajnak, J. Chem. Phys. 49, 4412 (1968).
[CrossRef]

W. T. Carnall, P. R. Fields, and K. Rajnak, J. Chem. Phys. 49, 4424 (1968).
[CrossRef]

1966 (1)

F. Auzel, C. R. Acad. Sci. Paris. 262, 1016 (1966).

Auzel, F.

F. Auzel, C. R. Acad. Sci. Paris. 262, 1016 (1966).

Blasse, G.

J. Sytsma, G. F. Imbush, and G. Blasse, J. Phys. Condens. Matter 2, 5171 (1990).
[CrossRef]

Cao, C. Y.

Carnall, W. T.

W. T. Carnall, P. R. Fields, and K. Rajnak, J. Chem. Phys. 49, 4412 (1968).
[CrossRef]

W. T. Carnall, P. R. Fields, and K. Rajnak, J. Chem. Phys. 49, 4424 (1968).
[CrossRef]

W. T. Carnall, G. L. Goodman, K. Rajnak, and R. S. Rana, Argonne National Laboratory Tech. Rep. ANL-88-8 (Argonne National Labortory, 1988).

Curley, M.

Dieke, G. H.

G. H. Dieke, Spectra and Energy Levels of Rare Earth Ions in Crystals (Interscience, 1968).

Fields, P. R.

W. T. Carnall, P. R. Fields, and K. Rajnak, J. Chem. Phys. 49, 4424 (1968).
[CrossRef]

W. T. Carnall, P. R. Fields, and K. Rajnak, J. Chem. Phys. 49, 4412 (1968).
[CrossRef]

Gamelin, D. R.

M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. P. Hehlen, Phys. Rev. B 61, 3337 (2000).
[CrossRef]

Gharavi, A. R.

Goodman, G. L.

W. T. Carnall, G. L. Goodman, K. Rajnak, and R. S. Rana, Argonne National Laboratory Tech. Rep. ANL-88-8 (Argonne National Labortory, 1988).

Güdel, H. U.

M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. P. Hehlen, Phys. Rev. B 61, 3337 (2000).
[CrossRef]

Hashimoto, S.

H. Kondo, T. Hirai, and S. Hashimoto, J. Lumin. 102, 727 (2003).
[CrossRef]

Hehlen, M. P.

M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. P. Hehlen, Phys. Rev. B 61, 3337 (2000).
[CrossRef]

Hirai, T.

H. Kondo, T. Hirai, and S. Hashimoto, J. Lumin. 102, 727 (2003).
[CrossRef]

Imbush, G. F.

J. Sytsma, G. F. Imbush, and G. Blasse, J. Phys. Condens. Matter 2, 5171 (1990).
[CrossRef]

Jenssen, H. P.

Johnson, L. F.

Kim, R. J.

Kondo, H.

H. Kondo, T. Hirai, and S. Hashimoto, J. Lumin. 102, 727 (2003).
[CrossRef]

Kumar, A.

A. Kumar, D. K. Rai, and S. B. Rai, Solid State Commun. 117, 387 (2001).
[CrossRef]

Lüthi, S. R.

M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. P. Hehlen, Phys. Rev. B 61, 3337 (2000).
[CrossRef]

McPherson, G. L.

Noginov, M. A.

Pollnau, M.

M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. P. Hehlen, Phys. Rev. B 61, 3337 (2000).
[CrossRef]

Qin, W. P.

Rai, D. K.

A. Kumar, D. K. Rai, and S. B. Rai, Solid State Commun. 117, 387 (2001).
[CrossRef]

Rai, S. B.

A. Kumar, D. K. Rai, and S. B. Rai, Solid State Commun. 117, 387 (2001).
[CrossRef]

Rajnak, K.

W. T. Carnall, P. R. Fields, and K. Rajnak, J. Chem. Phys. 49, 4412 (1968).
[CrossRef]

W. T. Carnall, P. R. Fields, and K. Rajnak, J. Chem. Phys. 49, 4424 (1968).
[CrossRef]

W. T. Carnall, G. L. Goodman, K. Rajnak, and R. S. Rana, Argonne National Laboratory Tech. Rep. ANL-88-8 (Argonne National Labortory, 1988).

Rana, R. S.

W. T. Carnall, G. L. Goodman, K. Rajnak, and R. S. Rana, Argonne National Laboratory Tech. Rep. ANL-88-8 (Argonne National Labortory, 1988).

Sytsma, J.

J. Sytsma, G. F. Imbush, and G. Blasse, J. Phys. Condens. Matter 2, 5171 (1990).
[CrossRef]

Thrash, R. J.

Venkateswarlu, P.

Wang, G. F.

Wang, L. L.

Wang, Y.

Wei, G. D.

Williams, A.

Zhang, J. S.

Zhu, P. F.

C. R. Acad. Sci. Paris. (1)

F. Auzel, C. R. Acad. Sci. Paris. 262, 1016 (1966).

J. Chem. Phys. (2)

W. T. Carnall, P. R. Fields, and K. Rajnak, J. Chem. Phys. 49, 4412 (1968).
[CrossRef]

W. T. Carnall, P. R. Fields, and K. Rajnak, J. Chem. Phys. 49, 4424 (1968).
[CrossRef]

J. Lumin. (1)

H. Kondo, T. Hirai, and S. Hashimoto, J. Lumin. 102, 727 (2003).
[CrossRef]

J. Opt. Soc. Am. B (3)

J. Phys. Condens. Matter (1)

J. Sytsma, G. F. Imbush, and G. Blasse, J. Phys. Condens. Matter 2, 5171 (1990).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. B (1)

M. Pollnau, D. R. Gamelin, S. R. Lüthi, H. U. Güdel, and M. P. Hehlen, Phys. Rev. B 61, 3337 (2000).
[CrossRef]

Solid State Commun. (1)

A. Kumar, D. K. Rai, and S. B. Rai, Solid State Commun. 117, 387 (2001).
[CrossRef]

Other (2)

G. H. Dieke, Spectra and Energy Levels of Rare Earth Ions in Crystals (Interscience, 1968).

W. T. Carnall, G. L. Goodman, K. Rajnak, and R. S. Rana, Argonne National Laboratory Tech. Rep. ANL-88-8 (Argonne National Labortory, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

UC emission spectra of Gd F 3 : 10% Yb 3 + , 0.7% Tm 3 + under 980 nm excitation.

Fig. 2
Fig. 2

Energy level diagrams of Gd 3 + , Yb 3 + , and Tm 3 + ions and possible upconverted processes.

Fig. 3
Fig. 3

Decay curve of 311.6 nm UC emission of Gd F 3 : 10% Yb 3 + , 0.7% Tm 3 + .

Fig. 4
Fig. 4

Excitation power dependence of UC fluorescence of Gd F 3 : 10% Yb 3 + , 0.7% Tm 3 + .

Fig. 5
Fig. 5

Excitation power dependence of UC emission spectra of Gd F 3 : 10% Yb 3 + , 0.7% Tm 3 + . The upper curve in the inset is the integrated intensity ratio of 276.8 279.0 nm emissions, and the lower curve is the integrated intensity ratio of all emissions from Gd 3 + to those from the I 6 1 of Tm 3 + .

Metrics