Abstract

We demonstrate the use of a single fiber-optic axicon device for organization of microscopic objects using longitudinal optical binding. Further, by manipulating the shape of the fiber tip, part of the emanating light was made to undergo total internal reflection in the conical tip region, enabling near-field trapping. Near-field trapping resulted in trapping and self-organization of long chains of particles along azimuthal directions (in contrast to the axial direction, observed in the case of large tip cone angle far-field trapping).

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. G. Grier, Nature 424, 810 (2003).
    [CrossRef] [PubMed]
  2. M. M. Burns, J. M. Fournier, and J. A. Golovchenko, Phys. Rev. Lett. 63, 1233 (1989).
    [CrossRef] [PubMed]
  3. S. K. Mohanty, J. T. Andrews, and P. K. Gupta, Opt. Express 12, 2746 (2004).
    [CrossRef] [PubMed]
  4. S. A. Tatarkova, A. E. Carruthers, and K. Dholakia, Phys. Rev. Lett. 89, 283901 (2002).
    [CrossRef]
  5. C. D. Mellor and C. D. Bain, ChemPhysChem 7, 329 (2006).
    [CrossRef]
  6. S. K. Mohanty and K. S. Mohanty, Proc. SPIE 6441, 644116 (2007).
    [CrossRef]
  7. S. K. Mohanty, K. S. Mohanty, and M. W. Berns, J. Biomed. Opt. 13, 046805JBO (2008).
    [CrossRef]
  8. K. S. Mohanty, C. Liberale, S. K. Mohanty, and V. Degiorgio, Appl. Phys. Lett. 92, 151113 (2008).
    [CrossRef]
  9. T. Grosjean, F. Baida, and D. Courjon, Appl. Opt. 46, 1994 (2007).
    [CrossRef] [PubMed]
  10. S. Eah and W. Jhe, Rev. Sci. Instrum. 74, 4969 (2003).
    [CrossRef]
  11. Z. Liu, C. Guo, J. Yang, and L. Yuan, Opt. Express 14, 12510 (2006).
    [CrossRef] [PubMed]
  12. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).
  13. J. Gelles, B. J. Schnapp, and M. P. Sheetz, Nature 331, 450 (1988).
    [CrossRef] [PubMed]
  14. V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, Nature 419, 145 (2002).
    [CrossRef] [PubMed]
  15. M. Gu, J. Haumonte, Y. Micheau, J. W. M. Chon, and X. Gan, Appl. Phys. Lett. 84, 4236 (2004).
    [CrossRef]
  16. A. S. Zelenina, R. Quidant, and M. Nieto-Vesperinas, Opt. Lett. 32, 1156 (2007).
    [CrossRef] [PubMed]

2008 (2)

S. K. Mohanty, K. S. Mohanty, and M. W. Berns, J. Biomed. Opt. 13, 046805JBO (2008).
[CrossRef]

K. S. Mohanty, C. Liberale, S. K. Mohanty, and V. Degiorgio, Appl. Phys. Lett. 92, 151113 (2008).
[CrossRef]

2007 (3)

2006 (2)

2004 (2)

M. Gu, J. Haumonte, Y. Micheau, J. W. M. Chon, and X. Gan, Appl. Phys. Lett. 84, 4236 (2004).
[CrossRef]

S. K. Mohanty, J. T. Andrews, and P. K. Gupta, Opt. Express 12, 2746 (2004).
[CrossRef] [PubMed]

2003 (2)

S. Eah and W. Jhe, Rev. Sci. Instrum. 74, 4969 (2003).
[CrossRef]

D. G. Grier, Nature 424, 810 (2003).
[CrossRef] [PubMed]

2002 (2)

S. A. Tatarkova, A. E. Carruthers, and K. Dholakia, Phys. Rev. Lett. 89, 283901 (2002).
[CrossRef]

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, Nature 419, 145 (2002).
[CrossRef] [PubMed]

1989 (1)

M. M. Burns, J. M. Fournier, and J. A. Golovchenko, Phys. Rev. Lett. 63, 1233 (1989).
[CrossRef] [PubMed]

1988 (1)

J. Gelles, B. J. Schnapp, and M. P. Sheetz, Nature 331, 450 (1988).
[CrossRef] [PubMed]

Andrews, J. T.

Baida, F.

Bain, C. D.

C. D. Mellor and C. D. Bain, ChemPhysChem 7, 329 (2006).
[CrossRef]

Berns, M. W.

S. K. Mohanty, K. S. Mohanty, and M. W. Berns, J. Biomed. Opt. 13, 046805JBO (2008).
[CrossRef]

Burns, M. M.

M. M. Burns, J. M. Fournier, and J. A. Golovchenko, Phys. Rev. Lett. 63, 1233 (1989).
[CrossRef] [PubMed]

Carruthers, A. E.

S. A. Tatarkova, A. E. Carruthers, and K. Dholakia, Phys. Rev. Lett. 89, 283901 (2002).
[CrossRef]

Chon, J. W. M.

M. Gu, J. Haumonte, Y. Micheau, J. W. M. Chon, and X. Gan, Appl. Phys. Lett. 84, 4236 (2004).
[CrossRef]

Courjon, D.

Degiorgio, V.

K. S. Mohanty, C. Liberale, S. K. Mohanty, and V. Degiorgio, Appl. Phys. Lett. 92, 151113 (2008).
[CrossRef]

Dholakia, K.

S. A. Tatarkova, A. E. Carruthers, and K. Dholakia, Phys. Rev. Lett. 89, 283901 (2002).
[CrossRef]

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, Nature 419, 145 (2002).
[CrossRef] [PubMed]

Eah, S.

S. Eah and W. Jhe, Rev. Sci. Instrum. 74, 4969 (2003).
[CrossRef]

Fournier, J. M.

M. M. Burns, J. M. Fournier, and J. A. Golovchenko, Phys. Rev. Lett. 63, 1233 (1989).
[CrossRef] [PubMed]

Gan, X.

M. Gu, J. Haumonte, Y. Micheau, J. W. M. Chon, and X. Gan, Appl. Phys. Lett. 84, 4236 (2004).
[CrossRef]

Garcés-Chávez, V.

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, Nature 419, 145 (2002).
[CrossRef] [PubMed]

Gelles, J.

J. Gelles, B. J. Schnapp, and M. P. Sheetz, Nature 331, 450 (1988).
[CrossRef] [PubMed]

Golovchenko, J. A.

M. M. Burns, J. M. Fournier, and J. A. Golovchenko, Phys. Rev. Lett. 63, 1233 (1989).
[CrossRef] [PubMed]

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).

Grier, D. G.

D. G. Grier, Nature 424, 810 (2003).
[CrossRef] [PubMed]

Grosjean, T.

Gu, M.

M. Gu, J. Haumonte, Y. Micheau, J. W. M. Chon, and X. Gan, Appl. Phys. Lett. 84, 4236 (2004).
[CrossRef]

Guo, C.

Gupta, P. K.

Haumonte, J.

M. Gu, J. Haumonte, Y. Micheau, J. W. M. Chon, and X. Gan, Appl. Phys. Lett. 84, 4236 (2004).
[CrossRef]

Jhe, W.

S. Eah and W. Jhe, Rev. Sci. Instrum. 74, 4969 (2003).
[CrossRef]

Liberale, C.

K. S. Mohanty, C. Liberale, S. K. Mohanty, and V. Degiorgio, Appl. Phys. Lett. 92, 151113 (2008).
[CrossRef]

Liu, Z.

McGloin, D.

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, Nature 419, 145 (2002).
[CrossRef] [PubMed]

Mellor, C. D.

C. D. Mellor and C. D. Bain, ChemPhysChem 7, 329 (2006).
[CrossRef]

Melville, H.

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, Nature 419, 145 (2002).
[CrossRef] [PubMed]

Micheau, Y.

M. Gu, J. Haumonte, Y. Micheau, J. W. M. Chon, and X. Gan, Appl. Phys. Lett. 84, 4236 (2004).
[CrossRef]

Mohanty, K. S.

S. K. Mohanty, K. S. Mohanty, and M. W. Berns, J. Biomed. Opt. 13, 046805JBO (2008).
[CrossRef]

K. S. Mohanty, C. Liberale, S. K. Mohanty, and V. Degiorgio, Appl. Phys. Lett. 92, 151113 (2008).
[CrossRef]

S. K. Mohanty and K. S. Mohanty, Proc. SPIE 6441, 644116 (2007).
[CrossRef]

Mohanty, S. K.

S. K. Mohanty, K. S. Mohanty, and M. W. Berns, J. Biomed. Opt. 13, 046805JBO (2008).
[CrossRef]

K. S. Mohanty, C. Liberale, S. K. Mohanty, and V. Degiorgio, Appl. Phys. Lett. 92, 151113 (2008).
[CrossRef]

S. K. Mohanty and K. S. Mohanty, Proc. SPIE 6441, 644116 (2007).
[CrossRef]

S. K. Mohanty, J. T. Andrews, and P. K. Gupta, Opt. Express 12, 2746 (2004).
[CrossRef] [PubMed]

Nieto-Vesperinas, M.

Quidant, R.

Schnapp, B. J.

J. Gelles, B. J. Schnapp, and M. P. Sheetz, Nature 331, 450 (1988).
[CrossRef] [PubMed]

Sheetz, M. P.

J. Gelles, B. J. Schnapp, and M. P. Sheetz, Nature 331, 450 (1988).
[CrossRef] [PubMed]

Sibbett, W.

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, Nature 419, 145 (2002).
[CrossRef] [PubMed]

Tatarkova, S. A.

S. A. Tatarkova, A. E. Carruthers, and K. Dholakia, Phys. Rev. Lett. 89, 283901 (2002).
[CrossRef]

Yang, J.

Yuan, L.

Zelenina, A. S.

Appl. Opt. (1)

Appl. Phys. Lett. (2)

M. Gu, J. Haumonte, Y. Micheau, J. W. M. Chon, and X. Gan, Appl. Phys. Lett. 84, 4236 (2004).
[CrossRef]

K. S. Mohanty, C. Liberale, S. K. Mohanty, and V. Degiorgio, Appl. Phys. Lett. 92, 151113 (2008).
[CrossRef]

ChemPhysChem (1)

C. D. Mellor and C. D. Bain, ChemPhysChem 7, 329 (2006).
[CrossRef]

J. Biomed. Opt. (1)

S. K. Mohanty, K. S. Mohanty, and M. W. Berns, J. Biomed. Opt. 13, 046805JBO (2008).
[CrossRef]

Nature (3)

D. G. Grier, Nature 424, 810 (2003).
[CrossRef] [PubMed]

J. Gelles, B. J. Schnapp, and M. P. Sheetz, Nature 331, 450 (1988).
[CrossRef] [PubMed]

V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, Nature 419, 145 (2002).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. Lett. (2)

M. M. Burns, J. M. Fournier, and J. A. Golovchenko, Phys. Rev. Lett. 63, 1233 (1989).
[CrossRef] [PubMed]

S. A. Tatarkova, A. E. Carruthers, and K. Dholakia, Phys. Rev. Lett. 89, 283901 (2002).
[CrossRef]

Proc. SPIE (1)

S. K. Mohanty and K. S. Mohanty, Proc. SPIE 6441, 644116 (2007).
[CrossRef]

Rev. Sci. Instrum. (1)

S. Eah and W. Jhe, Rev. Sci. Instrum. 74, 4969 (2003).
[CrossRef]

Other (1)

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a), (b) X Y -intensity distribution of the 800 nm beam transmitted through the fiber calculated at distances of 5 and 15 μ m from the tip (fiber core size of 8 μ m , refractive index of axicon as 1.5, cone angle of 30 ° , and water as the medium). (c), (d) Measured beam profiles at distances of 5 and 15 μ m .

Fig. 2
Fig. 2

(a) Optical binding of two 1 μ m polystyrene particles in the encircled region near the fiber tip. Top right inset shows magnified rectangular area of the tip. Inset in the bottom right shows a 3D intensity map of the two optically bound particles. (b) Measured histogram of the distance between centers of two 1 μ m optically bound particles. Inset shows tracking of the two particles (1 and 2) as the fiber tip (dark line) is translated.

Fig. 3
Fig. 3

(a) Ray optics schematic of longitudinal optical binding using large cone angle (e.g., 60°) tip. Optical trapping and binding leading to a chain of 1 μ m polystyrene particles at 146 mW beam power (b). (c) Accumulation of particles in a long chain ( 50 μ m ) after 15 min . (d)–(g) Oscillation (arrows show direction of movement) of part of the optically bound chain at the loose end. Images in (b)–(g) are the same magnification; scale bar, 10 μ m . (h) Schematic of the near-field trapping and binding using small cone angle (e.g., 30°) tip. Digitized images of near-field trapped polystyrene particles at 68 mW beam power, after 1 min (i), 5 min (j), and 15 min (k). (l) Dispersion of the chain after the laser is turned off. Images in (i)–(l) are the same magnification; scale bar, 20 μ m .

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

E ( x o , y o ) = exp ( i k z ) i λ z exp [ i k 2 z ( x o 2 + y o 2 ) ] { E ( x 1 , y 1 ) exp [ i k 2 z ( x 1 2 + y 1 2 ) ] } exp [ i 2 π λ z ( x o x 1 + y o y 1 ) ] d x 1 d y 1 ,

Metrics