Abstract

Fluidic lenses allow for varifocal optical elements, but current approaches are limited by the speed at which focal length can be changed. Here we demonstrate the use of a tunable acoustic gradient (TAG) index of refraction lens as a fast varifocal element. The optical power of the TAG lens varies continuously, allowing for rapid selection and modification of the effective focal length at time scales of 1μs and shorter. The wavefront curvature applied to the incident light is experimentally quantified as a function of time, and single-frame imaging is demonstrated. Results indicate that the TAG lens can successfully be employed to perform high-rate imaging at multiple locations.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Kaplan, N. Friedman, and N. Davidson, Opt. Lett. 26, 1078 (2001).
    [CrossRef]
  2. L. Yang, A. M. Raighne, E. M. McCabe, A. L. Dunbar, and T. Scharf, Appl. Opt. 44, 5928 (2005).
    [CrossRef] [PubMed]
  3. V. X. Yang, Y. Mao, B. A. Standish, N. R. Munce, S. Chiu, D. Burnes, B. C. Wilson, A. I. Vitkin, P. A. Himmer, and D. L. Dickensheets, Opt. Lett. 31, 1262 (2006).
    [CrossRef] [PubMed]
  4. R. Kuwano, T. Tokunaga, Y. Otani, and N. Umeda, Opt. Rev. 12, 405 (2005).
    [CrossRef]
  5. G. Druart, J. Taboury, N. Gurineau, R. Hadar, H. Sauer, A. Kattnig, and J. Primot, Opt. Lett. 33, 366 (2008).
    [CrossRef] [PubMed]
  6. M. Ye, B. Wang, T. Takahashi, and S. Sato, Opt. Rev. 14, 173 (2007).
    [CrossRef]
  7. S. Kuiper and B. H. W. Hendriks, Appl. Phys. Lett. 85, 1128 (2004).
    [CrossRef]
  8. T. Shibaguchi and H. Funato, Jpn. J. Appl. Phys. 31, 3196 (1992).
    [CrossRef]
  9. K. A. Higginson, M. A. Costolo, and E. A. Rietman, Appl. Phys. Lett. 84, 843 (2004).
    [CrossRef]
  10. E. McLeod and C. B. Arnold, Opt. Lett. 31, 3155 (2006).
    [CrossRef] [PubMed]
  11. A. Mermillod-Blondin, E. McLeod, and C. B. Arnold, Appl. Phys. A 93, 231 (2008).
    [CrossRef]
  12. E. McLeod and C. B. Arnold, J. Appl. Phys. 102, 033104 (2007).
    [CrossRef]
  13. I. Grulkowski, D. Jankowski, and P. Kwiek, Appl. Opt. 46, 5870 (2007).
    [CrossRef] [PubMed]

2008

2007

I. Grulkowski, D. Jankowski, and P. Kwiek, Appl. Opt. 46, 5870 (2007).
[CrossRef] [PubMed]

E. McLeod and C. B. Arnold, J. Appl. Phys. 102, 033104 (2007).
[CrossRef]

M. Ye, B. Wang, T. Takahashi, and S. Sato, Opt. Rev. 14, 173 (2007).
[CrossRef]

2006

2005

2004

K. A. Higginson, M. A. Costolo, and E. A. Rietman, Appl. Phys. Lett. 84, 843 (2004).
[CrossRef]

S. Kuiper and B. H. W. Hendriks, Appl. Phys. Lett. 85, 1128 (2004).
[CrossRef]

2001

1992

T. Shibaguchi and H. Funato, Jpn. J. Appl. Phys. 31, 3196 (1992).
[CrossRef]

Arnold, C. B.

A. Mermillod-Blondin, E. McLeod, and C. B. Arnold, Appl. Phys. A 93, 231 (2008).
[CrossRef]

E. McLeod and C. B. Arnold, J. Appl. Phys. 102, 033104 (2007).
[CrossRef]

E. McLeod and C. B. Arnold, Opt. Lett. 31, 3155 (2006).
[CrossRef] [PubMed]

Burnes, D.

Chiu, S.

Costolo, M. A.

K. A. Higginson, M. A. Costolo, and E. A. Rietman, Appl. Phys. Lett. 84, 843 (2004).
[CrossRef]

Davidson, N.

Dickensheets, D. L.

Druart, G.

Dunbar, A. L.

Friedman, N.

Funato, H.

T. Shibaguchi and H. Funato, Jpn. J. Appl. Phys. 31, 3196 (1992).
[CrossRef]

Grulkowski, I.

Gurineau, N.

Hadar, R.

Hendriks, B. H. W.

S. Kuiper and B. H. W. Hendriks, Appl. Phys. Lett. 85, 1128 (2004).
[CrossRef]

Higginson, K. A.

K. A. Higginson, M. A. Costolo, and E. A. Rietman, Appl. Phys. Lett. 84, 843 (2004).
[CrossRef]

Himmer, P. A.

Jankowski, D.

Kaplan, A.

Kattnig, A.

Kuiper, S.

S. Kuiper and B. H. W. Hendriks, Appl. Phys. Lett. 85, 1128 (2004).
[CrossRef]

Kuwano, R.

R. Kuwano, T. Tokunaga, Y. Otani, and N. Umeda, Opt. Rev. 12, 405 (2005).
[CrossRef]

Kwiek, P.

Mao, Y.

McCabe, E. M.

McLeod, E.

A. Mermillod-Blondin, E. McLeod, and C. B. Arnold, Appl. Phys. A 93, 231 (2008).
[CrossRef]

E. McLeod and C. B. Arnold, J. Appl. Phys. 102, 033104 (2007).
[CrossRef]

E. McLeod and C. B. Arnold, Opt. Lett. 31, 3155 (2006).
[CrossRef] [PubMed]

Mermillod-Blondin, A.

A. Mermillod-Blondin, E. McLeod, and C. B. Arnold, Appl. Phys. A 93, 231 (2008).
[CrossRef]

Munce, N. R.

Otani, Y.

R. Kuwano, T. Tokunaga, Y. Otani, and N. Umeda, Opt. Rev. 12, 405 (2005).
[CrossRef]

Primot, J.

Raighne, A. M.

Rietman, E. A.

K. A. Higginson, M. A. Costolo, and E. A. Rietman, Appl. Phys. Lett. 84, 843 (2004).
[CrossRef]

Sato, S.

M. Ye, B. Wang, T. Takahashi, and S. Sato, Opt. Rev. 14, 173 (2007).
[CrossRef]

Sauer, H.

Scharf, T.

Shibaguchi, T.

T. Shibaguchi and H. Funato, Jpn. J. Appl. Phys. 31, 3196 (1992).
[CrossRef]

Standish, B. A.

Taboury, J.

Takahashi, T.

M. Ye, B. Wang, T. Takahashi, and S. Sato, Opt. Rev. 14, 173 (2007).
[CrossRef]

Tokunaga, T.

R. Kuwano, T. Tokunaga, Y. Otani, and N. Umeda, Opt. Rev. 12, 405 (2005).
[CrossRef]

Umeda, N.

R. Kuwano, T. Tokunaga, Y. Otani, and N. Umeda, Opt. Rev. 12, 405 (2005).
[CrossRef]

Vitkin, A. I.

Wang, B.

M. Ye, B. Wang, T. Takahashi, and S. Sato, Opt. Rev. 14, 173 (2007).
[CrossRef]

Wilson, B. C.

Yang, L.

Yang, V. X.

Ye, M.

M. Ye, B. Wang, T. Takahashi, and S. Sato, Opt. Rev. 14, 173 (2007).
[CrossRef]

Appl. Opt.

Appl. Phys. A

A. Mermillod-Blondin, E. McLeod, and C. B. Arnold, Appl. Phys. A 93, 231 (2008).
[CrossRef]

Appl. Phys. Lett.

S. Kuiper and B. H. W. Hendriks, Appl. Phys. Lett. 85, 1128 (2004).
[CrossRef]

K. A. Higginson, M. A. Costolo, and E. A. Rietman, Appl. Phys. Lett. 84, 843 (2004).
[CrossRef]

J. Appl. Phys.

E. McLeod and C. B. Arnold, J. Appl. Phys. 102, 033104 (2007).
[CrossRef]

Jpn. J. Appl. Phys.

T. Shibaguchi and H. Funato, Jpn. J. Appl. Phys. 31, 3196 (1992).
[CrossRef]

Opt. Lett.

Opt. Rev.

R. Kuwano, T. Tokunaga, Y. Otani, and N. Umeda, Opt. Rev. 12, 405 (2005).
[CrossRef]

M. Ye, B. Wang, T. Takahashi, and S. Sato, Opt. Rev. 14, 173 (2007).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup for determining the wavefront’s ROC using a Shack–Hartmann sensor. The variable delay between the laser pulse and the ac driving signal is set with a pulse-delay generator.

Fig. 2
Fig. 2

(a) TAG lens focusing power as a function of time for a 3.44 V p - p driving signal at a frequency of 388 kHz . The solid curve shows a two-parameter (amplitude and phase) sinusoidal fit to the data. (b) Maximum lens power as a function of the driving amplitude for the 388 kHz signal. The solid line shows a linear fit to the data. (c) Zernike mode coefficients fitting the wavefront of the output beam for a driving amplitude of 16.4 V p - p , a driving frequency of 388 kHz , and a synchronization delay set so that the lens power is maximized. The inset shows the reconstructed wavefront.

Fig. 3
Fig. 3

Experimental setup for imaging an object placed at a distance D before the TAG lens. The focal length of the fixed lens L is f l = 200 mm .

Fig. 4
Fig. 4

Images of a USAF 1951 resolution test chart: (a) object at D = 160 mm, TAG lens off; (b) object at D = 160 mm, TAG lens on with the spark lamp synchronized so that the TAG lens focal length is 160 mm when the object is illuminated; (c) object at D = 260 mm, TAG lens off; (d) object at D = 260 mm, TAG lens on and synchronization set so that the TAG lens focal length is 260 mm . The time difference in the synchronization states of (b) and (d) is 0.3 μ s . The scale bars represent a 1 mm length.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

n ( r , t ) = n 0 + n a J 0 ( ω r v ) sin ( ω t ) ,
n ( r , t ) = n 0 + ( n a n a ω 2 4 v 2 r 2 ) sin ( ω t ) .
δ ( t ) = 1 f ( t ) = L n a ω 2 2 v 2 sin ( ω t ) ,
1 ROC ( d ) = δ 1 + d ( 1 + δ 2 z l 2 ) ( δ 1 d ) 2 + ( d δ 1 z l ) 2 ,

Metrics