Abstract

We present an experimental setup to detect transient vibrational circular dichroism signals. A femtosecond laser system is synchronized to a photoelastic modulator to produce alternating left- and right-handed circularly polarized mid-IR pulses at 1kHz repetition rate. Transient changes in the circular dichroism of the CH-stretch vibrations of a cobalt-sparteine complex were probed in a proof-of-principle experiment and are clearly distinct from conventional transient absorption changes.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Silva, J. Kubelka, P. Bour, S. M. Decatur, and T. A. Keiderling, Proc. Natl. Acad. Sci. USA 97, 8318 (2000).
    [Crossref] [PubMed]
  2. X. Xie and J. D. Simon, J. Am. Chem. Soc. 112, 7802 (1990).
    [Crossref]
  3. X. Xie and J. D. Simon, J. Opt. Soc. Am. B 7, 1673 (1990).
    [Crossref]
  4. X. Xie and J. D. Simon, Rev. Sci. Instrum. 60, 2614 (1989).
    [Crossref]
  5. T. Dartigalongue, C. Niezborala, and F. Hache, Phys. Chem. Chem. Phys. 9, 1611 (2007).
    [Crossref] [PubMed]
  6. P. Hamm, R. A. Kaindl, and J. Stenger, Opt. Lett. 25, 1798 (2000).
    [Crossref]
  7. J. C. Kemp, J. Opt. Soc. Am. 59, 950 (1969).
  8. Y. He, X. Cao, L. A. Nafie, and T. B. Freedman, J. Am. Chem. Soc. 123, 11320 (2001).
    [Crossref] [PubMed]
  9. L. A. Nafie, J. Phys. Chem. A 108,7222 (2004).
    [Crossref]

2007 (1)

T. Dartigalongue, C. Niezborala, and F. Hache, Phys. Chem. Chem. Phys. 9, 1611 (2007).
[Crossref] [PubMed]

2004 (1)

L. A. Nafie, J. Phys. Chem. A 108,7222 (2004).
[Crossref]

2001 (1)

Y. He, X. Cao, L. A. Nafie, and T. B. Freedman, J. Am. Chem. Soc. 123, 11320 (2001).
[Crossref] [PubMed]

2000 (2)

P. Hamm, R. A. Kaindl, and J. Stenger, Opt. Lett. 25, 1798 (2000).
[Crossref]

R. Silva, J. Kubelka, P. Bour, S. M. Decatur, and T. A. Keiderling, Proc. Natl. Acad. Sci. USA 97, 8318 (2000).
[Crossref] [PubMed]

1990 (2)

X. Xie and J. D. Simon, J. Am. Chem. Soc. 112, 7802 (1990).
[Crossref]

X. Xie and J. D. Simon, J. Opt. Soc. Am. B 7, 1673 (1990).
[Crossref]

1989 (1)

X. Xie and J. D. Simon, Rev. Sci. Instrum. 60, 2614 (1989).
[Crossref]

1969 (1)

Bour, P.

R. Silva, J. Kubelka, P. Bour, S. M. Decatur, and T. A. Keiderling, Proc. Natl. Acad. Sci. USA 97, 8318 (2000).
[Crossref] [PubMed]

Cao, X.

Y. He, X. Cao, L. A. Nafie, and T. B. Freedman, J. Am. Chem. Soc. 123, 11320 (2001).
[Crossref] [PubMed]

Dartigalongue, T.

T. Dartigalongue, C. Niezborala, and F. Hache, Phys. Chem. Chem. Phys. 9, 1611 (2007).
[Crossref] [PubMed]

Decatur, S. M.

R. Silva, J. Kubelka, P. Bour, S. M. Decatur, and T. A. Keiderling, Proc. Natl. Acad. Sci. USA 97, 8318 (2000).
[Crossref] [PubMed]

Freedman, T. B.

Y. He, X. Cao, L. A. Nafie, and T. B. Freedman, J. Am. Chem. Soc. 123, 11320 (2001).
[Crossref] [PubMed]

Hache, F.

T. Dartigalongue, C. Niezborala, and F. Hache, Phys. Chem. Chem. Phys. 9, 1611 (2007).
[Crossref] [PubMed]

Hamm, P.

He, Y.

Y. He, X. Cao, L. A. Nafie, and T. B. Freedman, J. Am. Chem. Soc. 123, 11320 (2001).
[Crossref] [PubMed]

Kaindl, R. A.

Keiderling, T. A.

R. Silva, J. Kubelka, P. Bour, S. M. Decatur, and T. A. Keiderling, Proc. Natl. Acad. Sci. USA 97, 8318 (2000).
[Crossref] [PubMed]

Kemp, J. C.

Kubelka, J.

R. Silva, J. Kubelka, P. Bour, S. M. Decatur, and T. A. Keiderling, Proc. Natl. Acad. Sci. USA 97, 8318 (2000).
[Crossref] [PubMed]

Nafie, L. A.

L. A. Nafie, J. Phys. Chem. A 108,7222 (2004).
[Crossref]

Y. He, X. Cao, L. A. Nafie, and T. B. Freedman, J. Am. Chem. Soc. 123, 11320 (2001).
[Crossref] [PubMed]

Niezborala, C.

T. Dartigalongue, C. Niezborala, and F. Hache, Phys. Chem. Chem. Phys. 9, 1611 (2007).
[Crossref] [PubMed]

Silva, R.

R. Silva, J. Kubelka, P. Bour, S. M. Decatur, and T. A. Keiderling, Proc. Natl. Acad. Sci. USA 97, 8318 (2000).
[Crossref] [PubMed]

Simon, J. D.

X. Xie and J. D. Simon, J. Am. Chem. Soc. 112, 7802 (1990).
[Crossref]

X. Xie and J. D. Simon, J. Opt. Soc. Am. B 7, 1673 (1990).
[Crossref]

X. Xie and J. D. Simon, Rev. Sci. Instrum. 60, 2614 (1989).
[Crossref]

Stenger, J.

Xie, X.

X. Xie and J. D. Simon, J. Am. Chem. Soc. 112, 7802 (1990).
[Crossref]

X. Xie and J. D. Simon, J. Opt. Soc. Am. B 7, 1673 (1990).
[Crossref]

X. Xie and J. D. Simon, Rev. Sci. Instrum. 60, 2614 (1989).
[Crossref]

J. Am. Chem. Soc. (2)

X. Xie and J. D. Simon, J. Am. Chem. Soc. 112, 7802 (1990).
[Crossref]

Y. He, X. Cao, L. A. Nafie, and T. B. Freedman, J. Am. Chem. Soc. 123, 11320 (2001).
[Crossref] [PubMed]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

J. Phys. Chem. A (1)

L. A. Nafie, J. Phys. Chem. A 108,7222 (2004).
[Crossref]

Opt. Lett. (1)

Phys. Chem. Chem. Phys. (1)

T. Dartigalongue, C. Niezborala, and F. Hache, Phys. Chem. Chem. Phys. 9, 1611 (2007).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. USA (1)

R. Silva, J. Kubelka, P. Bour, S. M. Decatur, and T. A. Keiderling, Proc. Natl. Acad. Sci. USA 97, 8318 (2000).
[Crossref] [PubMed]

Rev. Sci. Instrum. (1)

X. Xie and J. D. Simon, Rev. Sci. Instrum. 60, 2614 (1989).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

a, Schematic view of the transient VCD setup; b, triggering and synchronization of the laser system to the PEM.

Fig. 2
Fig. 2

Calibration of PEM retardation and trigger delay. The optical head is sandwiched between two crossed polarizers, and the delay sent to the laser system is varied over a few microseconds. At delays of 5 and 15 μ s the modulator acts as λ 4 and λ 4 waveplate, producing left- and right-handed circularly polarized probe pulses. Triangles are experimental data; the solid line represents Eq. (1) for φ = π 4 . Small deviations can be accounted for by a static birefringence of the PEM causing a tiny ellipticity of our pulses: E left = E 0 ( ε L + 0.0027 ε x ) and E right = E 0 ( ε R + 0.0027 ε y ) , where ε L , ε R represent ideal circular polarization.

Fig. 3
Fig. 3

a, Structure and absorption spectra of Co ( sp ) Cl 2 and Ni ( sp ) Cl 2 in C D Cl 3 in the C–H stretch region of the sparteine ligand (concentration 0.3 mol l ). b, Static VCD spectra recorded with the laser setup (common baseline). The Ni ( sp ) Cl 2 -signal is positive; VCD of Co ( sp ) Cl 2 is negative and decreasing at higher temperature. c, solid black lines, temperature-induced change in absorption (bottom) and static VCD (top) both scaled to a 0.6 K temperature rise to match the pump–probe spectrum at 100 ps delay (solid gray line, bottom). A pump–probe spectrum after 10 ps (dashed gray line) is also shown. Open symbols represent the transient VCD signal in d and e. d–f, Transient absorption signals (bottom) and transient VCD signals (top) at different probe frequencies ( 90 min integration, 70,000 pulses/point). Data plotted in black and gray were recorded several weeks apart. Transient measurements of the Ni complex were not possible, because the compound was unstable under visible irradiation.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

I ( t ) = I 0 sin [ φ sin ( 2 π f t ) ] 2 ,
Δ A VCD = log 10 ( I probe left I ref left ) log 10 ( I probe right I ref right ) .
Δ A transient = Δ A pumped Δ A unpumped .

Metrics