Abstract

Nonlinear interaction between spectral components in two different photonic bandgaps is experimentally demonstrated by launching femtosecond pulses near a zero-dispersion wavelength of a hybrid photonic crystal fiber, which guides by a combination of total internal reflection and bandgap effects. It is demonstrated that the initial pulse becomes spectrally broadened, and narrowband resonant radiation is generated in a different bandgap from the one responsible for guiding at the pump wavelength. The spectral intensity of the resonant radiation peaks at 2.7dB below that of the broadened pulse in the pump-guiding bandgap.

© 2008 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Cerqueira S. Jr., F. Luan, C. M. B. Cordeiro, A. K. George, and J. C. Knight, Opt. Express 14, 926 (2006).
    [Crossref] [PubMed]
  2. N. M. Litchinitser, S. C. Dunn, P. E. Steinvurzel, B. J. Eggleton, T. P. White, R. C. McPhedran, and C. M. Sterke, Opt. Express 12, 1540 (2004).
    [Crossref] [PubMed]
  3. J. Jasapara, T. H. Her, R. Bise, R. Windeler, and D. J. Digiovanni, J. Opt. Soc. Am. B 20, 1611 (2003).
    [Crossref]
  4. F. Biancalana, D. V. Skryabin, and A. V. Yulin, Phys. Rev. E 70, 016615 (2004).
    [Crossref]
  5. N. Akhmediev and M. Karlsson, Phys. Rev. A 51, 2602 (1995).
    [Crossref] [PubMed]
  6. A. Fuerbach, P. Steinvurzel, J. Bolger, and B. Eggleton, Opt. Express 13, 2977 (2005).
    [Crossref] [PubMed]
  7. T. Schreiber, F. Röser, O. Schmidt, J. Limpert, R. Iliew, F. Lederer, A. Petersson, C. Jacobsen, K. Hansen, J. Broeng, and A. Tünnermann, Opt. Express 13, 7621 (2005).
    [Crossref] [PubMed]

2006 (1)

2005 (2)

2004 (2)

2003 (1)

1995 (1)

N. Akhmediev and M. Karlsson, Phys. Rev. A 51, 2602 (1995).
[Crossref] [PubMed]

Akhmediev, N.

N. Akhmediev and M. Karlsson, Phys. Rev. A 51, 2602 (1995).
[Crossref] [PubMed]

Biancalana, F.

F. Biancalana, D. V. Skryabin, and A. V. Yulin, Phys. Rev. E 70, 016615 (2004).
[Crossref]

Bise, R.

Bolger, J.

Broeng, J.

Cerqueira S., A.

Cordeiro, C. M. B.

Digiovanni, D. J.

Dunn, S. C.

Eggleton, B.

Eggleton, B. J.

Fuerbach, A.

George, A. K.

Hansen, K.

Her, T. H.

Iliew, R.

Jacobsen, C.

Jasapara, J.

Karlsson, M.

N. Akhmediev and M. Karlsson, Phys. Rev. A 51, 2602 (1995).
[Crossref] [PubMed]

Knight, J. C.

Lederer, F.

Limpert, J.

Litchinitser, N. M.

Luan, F.

McPhedran, R. C.

Petersson, A.

Röser, F.

Schmidt, O.

Schreiber, T.

Skryabin, D. V.

F. Biancalana, D. V. Skryabin, and A. V. Yulin, Phys. Rev. E 70, 016615 (2004).
[Crossref]

Steinvurzel, P.

Steinvurzel, P. E.

Sterke, C. M.

Tünnermann, A.

White, T. P.

Windeler, R.

Yulin, A. V.

F. Biancalana, D. V. Skryabin, and A. V. Yulin, Phys. Rev. E 70, 016615 (2004).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Hybrid PCF: the black circles are air holes and the white inclusions are Ge-doped rods.

Fig. 2
Fig. 2

Hybrid PCF results: (a) Simulations of confinement loss and chromatic dispersion; (b) measured transmitted spectrum and the calculated 2nd and 3rd order PBGs shown in gray.

Fig. 3
Fig. 3

Nonlinear analysis as a function of input power: (a) Radiation condition curve between soliton wavenumber and radiation; (b) Measured output spectrum of pump and RR.

Fig. 4
Fig. 4

Nonlinear response as a function of pump central wavelength.

Fig. 5
Fig. 5

The most efficient RR excitation case and a photograph of green light at the fiber output.

Metrics